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ABSTRACT
Decentralization promises to overcome many of the shortcomings
of centralized data systems: It puts clients in control of their own
data and the processing that they perform on it, without requir-
ing them to trust a central entity. However, decentralization faces
many challenges. While the problems of efficiency and security
have been in the focus of the data management community, in this
keynote talk, I emphasize the need for research on other challenges
of decentralized data systems, namely, governance and responsi-
bility. Based on examples from blockchain and federated learning
systems, I argue that these challenges require more attention from
the data management community and open many new research
opportunities.
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1 MOTIVATION
The classical design of data systems is centralized: All processing
units and all data are controlled by a single entity. This way, the
entire data pipeline can be optimized by that entity, allowing for the
design of highly efficient systems. In particular, there is no need to
coordinate the processing across multiple stakeholders; instead, all
necessary decisions are made by the central entity that is in control.
This does not mean that the processing units themselves cannot
form a distributed system. The difference between decentralization
and distribution is based on the question who controls the data
and the processing. Prominent examples of centralized systems are
deep learning systems [8] and database management systems [11].

While finding wide adoption, the centralized paradigm has short-
comings. First and foremost, it is evident that clients of a centralized
data system need to trust the entity controlling the system. Further-
more, by allowing the centralized system to control and process
their data, clients give up their autonomy and privacy. Finally, the
centralized entity can become a single point of failure if it stops
operating the data system for whatever reason (e.g., technical rea-
sons or economical reasons.) To overcome these shortcomings, it
is common that researchers develop decentralized alternatives to
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centralized data systems. This phenomenon is not new, but has
already been observed decades ago [9].

More recently, two promising instantiations of the decentralized
data systems paradigm have received a lot of attention: Blockchain
systems for transaction processing and federated learning systems
for the training of deep neural networks. Blockchains like Bit-
coin [10], Ethereum [17], or Hyperledger Fabric [1] allow for the
decentralized processing and validation of transactions by a group
of peer nodes. The transactions are organized as a sequence of
immutable blocks that link each other by a cryptographic hash
function. Federated learning systems like Flower [2] and Tensor-
Flow Federated [3] allow clients to jointly train a deep neural net-
work while keeping their data private [13]. This is achieved by only
sharing model parameters that are aggregated after each training
round instead of transferring the raw training data to a central
entity. While tackling different use cases, both types of system have
in common that they overcome centralization by putting control
(over transaction processing or neural network training, respec-
tively) into the hands of a large group of peer entities instead of
centralizing it at a single party.

2 CHALLENGES
Despite their advantages, decentralized data systems face a couple
of challenges:

Performance: First and foremost, performance of decentralized
systems is typically lower than that of their centralized counterparts.
This is due to the overhead induced by the need for coordination
between the many peer nodes. As a consequence, blockchains suffer
of a higher transaction latency than centralized databases, which
can result in lower throughput and a higher rate of transaction
conflicts [4]. Federated learning systems show a lower convergence
speed and cause a higher energy consumption than centralized
implementations [15].

Security. The central role of peer nodes in a decentralized data
system opens new attack vectors. Sybil attacks try to influence the
global decisions by infiltrating a large number of peer nodes into
the system that are in fact all controlled by a single entity [6].Man-
in-the-middle attacks can attack single peer nodes by intercepting
their communication with the rest of the system [7]. Poisoning
attacks aim at introducing malicious data into the decentralized
data system [12, 14]. There are numerous counter-measures against
these attacks, but they are notoriously expensive [15].

Governance. Decentralized systems are hard to control, which
makes governance difficult. In blockchain systems, this regards the
changing of central system policies, such as the block size or the
endorsement policy in Hyperledger Fabric [4, 5]. In federated learn-
ing, the quality of a trained neural network depends on the quality
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of the training data. Hence, data governance plays an important
role. Indeed, regulations like the EU AI Act put strict requirements
on data governance into place [15]. However, the decentralized
nature of federated learning makes data governance difficult, as all
training data stays private on the peer nodes and is not accessible
by a central entity.

Responsibility. In relevant legislation such as the GDPR and the
EU AI Act, there is a clear assignment of responsibilities to a central
entity that is in control of the data and processing. However, in
a decentralized data system, it is unclear who is responsible and
accountable for what part of the process. This makes it difficult to
map the legal responsibilities to concrete, individual entities [16].
As no single entity is in control of the entire data system, there is
the risk that either a single entity becomes accountable for actions
that were out of its control, or that the entire system operates in a
legal “gray area.”

3 RESEARCH OPPORTUNITIES
In my keynote, I argue that the data management community is in a
good position to tackle the challenges of decentralized data systems.
However, current research is biased toward optimizing performance
and security. While these questions are important, there is only
little research performed on governance and responsibility.

In blockchain systems, legislation-related issues, such as GDPR’s
right to erasure and right to rectification vis-à-vis an immutable
ledger, remain to be solved. Furthermore, there are open philo-
sophical and ethical questions, such as the legitimation of a de-
centralized, anonymous group of peers to control business-critical
transactions, or the implementation of ethics such as fairness and
non-discrimination into blockchain systems. For federated learning
systems, the most pressing question is that of data governance in a
decentralized system [15]. Further issues regard human oversight,
robustness and the need for auditing the system.

To tackle these kind of problems, an interdisciplinary research
effort will be necessary. It will be important that the data man-
agement community engages in this discussion, as we have the
technical expertise that is urgently needed.
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