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ABSTRACT
Despite all recent advancements in blockchain technology, writing
efficient smart contracts still heavily relies on the expertise and
ingenuity of programmers struggling with low-level languages that
are hard to optimize by non-expert users. This paper presents De-
SCO, a declarative framework for writing gas-efficient correct smart
contracts. In DeSCO, smart contracts are written in a Datalog-style
language, and a series of query optimization techniques are applied
automatically to produce gas-efficient smart contracts. We identify
storage operations as the primary source of overhead for smart con-
tracts, apply traditional query optimizations to storage operations,
and develop a deterministic and efficient selective view material-
ization approach tailored for smart contract development. In addi-
tion, our work is agnostic to the underlying blockchain platforms
and platform variants by using simulation. Our evaluation, con-
ducted on real-world smart contracts, demonstrates the efficiency
of DeSCO in bridging the performance gap between automatically
generated codes and prior carefully hand-tuned implementations
while offering the promise of verifiability and rapid prototyping
for non-expert programmers.
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1 INTRODUCTION
Smart contracts are digital agreements leveraging blockchain tech-
nology’s decentralized and immutable nature, ensuring secure and
transparent execution. Utilizing distributed consensus and cryp-
tographic verification, smart contracts enhance trust, auditability,
and tamper resistance, significantly impacting industries like fi-
nance [35], logistics [13], and healthcare [27].
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As decentralized platforms, public blockchains incentivize par-
ticipants to process transactions through fees, commonly called
gas costs. These fees, paid by transaction senders, are determined
by the number and types of instructions executed [40]. Given the
high transaction volume1, even minor computational overheads
can lead to substantial financial losses.

Today, writing efficient smart contracts still heavily relies on
the expertise of programmers. Although several optimization tools
exist [9, 10, 15, 19], their application is limited, particularly because
these contracts require a deep understanding of low-level bytecode,
making optimization challenging and error-prone.

Bugs in smart contracts have resulted in financial losses amount-
ing to millions of US dollars [41]. Various verification tools use
formal methods [11, 14, 38], static analysis [21, 22, 39], and test-
ing [25, 36] to address these risks. However, despite their effective-
ness in identifying different vulnerabilities, the complexity of the
Turing-complete Solidity language [6], commonly used for smart
contracts, poses smart contract verification challenges.

To enable automatic optimization and unlock further potential
for more effective verification and analysis, we propose a shift to-
wards declarative programming for smart contracts while we focus
on resource optimization through query optimizations. Declarative
languages offer several benefits including separating logic from im-
plementation, enabling programmers to focus on writing high-level
logic without considering the underlying implementation. This re-
duces errors and facilitates maintenance and verification [16]. They
also enable automatic code generation and optimization [26, 28, 34],
allowing even novice programmers to create efficient smart con-
tracts.

As the first step, this paper focuses on the problem of efficient
code generation for declarative smart contracts. We introduces
a domain-specific Datalog language which is based on relational
logic for programming smart contracts. While demonstrated to be
feasible [17], Datalog implementations currently suffer from perfor-
mance overheads compared to hand-written code. Our performance
analysis (Section 3) identifies excessive temporary data storage as
a major issue.

1According to Etherscan, at the time of writing this paper, Ethereum sees more than
one million transactions per day, with an average transaction fee of 6.4 USD.
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We propose selective view materialization to optimize storage
and minimize runtime query costs. Although this technique has
been extensively studied for decades, two unique challenges arise
in optimizing smart contracts. Firstly, the immutable nature of
smart contracts renders dynamic optimization techniques unfea-
sible, limiting us to static options. Secondly, previous studies on
static view selections [33, 37] assume the availability of an accurate
cost model. However, obtaining a static cost model for smart con-
tracts is challenging due to the intricate mechanics of Ethereum
gas calculation [40]. Despite the extensive effort to optimize smart
contracts [9, 22, 30], to our knowledge, there is no accurate cost
model for smart contracts.

These challenges give rise to a more precise technical problem
that we tackle in this paper: how can we statically choose the best set
of materialization views without relying on an accurate cost model?

To address the above problem, we profile smart contracts using
specific execution traces within a local Ethereum emulation frame-
work and then precisely gauge the costs associated with various
candidate view materialization plans. Our approach offers two dis-
tinct advantages over conventional methods reliant on pre-defined
cost models. First, the Ethereum Virtual Machine (EVM) instruc-
tions dictate the cost of executing smart contracts, which remain
unaffected by environmental variables like available memory or
cache performance. Second, blockchain platforms constantly evolve
and develop, making it challenging to maintain a consistently accu-
rate cost model that aligns with updates. In contrast, our profiling-
based approach can be seamlessly integrated into emulation tools
provided by different platforms with minimal adjustments.

Despite higher initial computational costs and time than a static
cost model, the long-term financial impact justifies our profiling
approach since smart contracts are long-running once deployed.
We optimize profiling by identifying a subset of materialization
plans guaranteed to include the optimal one, using simplification
rules to eliminate unnecessary cases as in Section 5.3.

Specifically, this paper contributes to the development of gas-
efficient smart contracts using declarative languages by:
Performance analysis.We perform extensive performance analy-
sis, identifying storage operations as the key bottlenecks (Section 3).
Novel view selection.We develop novel view selection techniques
for optimal materialization without relying on an accurate cost
model, making it platform-agnostic and adaptable (Section 5).
Evaluation.Wevalidating our approach throughDeSCO, aDeclarative
Smart Contract Optimizer, that integrates novel optimization tech-
niques and conventional database optimization strategies, demon-
strating promising results in bridging performance gaps (Section 6).

2 DECLARATIVE SMART CONTRACTS
This section shows how Datalog [7] can be used for writing declar-
ative smart contracts. Here, transaction records are treated as rela-
tional tables, and the state of contracts is defined using relational
queries on these tables [17]. We use a token management smart con-
tract example throughout this section. The smart contract supports
three types of transactions: mint (to create new tokens), burn (to
destroy tokens), and transfer. Figure 1 shows the transfer records
and the address balance sheet as two relational tables. To illustrate
how the balance sheet is calculated through a query on the transfer

Listing 1: A Datalog contract for token management.
1 /* Relation declaration */
2 . d e c l ∗ owner ( p : a dd r e s s )
3 . d e c l ∗ t o t a l S u p p l y ( n : i n t )
4 . d e c l ba l anceOf ( p : addre s s , n : i n t ) [ 0 ]
5 . . .
6 /* Public interfaces declaration */
7 . p u b l i c even t recv_mint , recv_burn ,
8 r e c v _ t r a n s f e r
9 . p u b l i c ba l anceOf ( 1 ) , t o t a l S u p p l y ( 0 )
10 /* Function declaration */
11 . f u n c t i o n canSend
12 /* Transaction rules */
13 mint ( p , n ) : − r ecv_min t ( p , n ) , msgSender ( s ) ,
14 owner ( s ) , n >0 , p ! = 0 .
15 burn ( p , n ) : − r ecv_burn ( p , n ) , msgSender ( s ) ,
16 owner ( s ) , p ! = 0 , ba l anceOf ( p ,m) , n<=m.
17 t r a n s f e r ( s , r , n ) : − r e c v _ t r a n s f e r ( s , r , n ) ,
18 ba l anceOf ( s ,m) ,m>=n , n >0 , canSend ( s , r ) .
19 /* Inference rules */
20 canSend ( p , q ) : − pe rm i s s i on ( p ) , p e rm i s s i on ( q ) .
21 t o t a lOu t ( p , s ) : − t r a n s f e r ( p , _ , _ ) ,
22 s=sum n : t r a n s f e r ( p , _ , n ) .
23 t o t a l I n ( p , s ) : − t r a n s f e r ( _ , p , _ ) ,
24 s=sum n : t r a n s f e r ( _ , p , n ) .
25 ba l anceOf ( p , s ) : − t o t a lOu t ( p , o ) , t o t a l I n ( p , i ) ,
26 s : = i −o .
27 t o t a lM i n t ( s ) : − s=sum v : mint ( _ , v ) .
28 t o t a l B u r n t ( s ) : − s=sum v : burn ( _ , v ) .
29 t o t a l S u p p l y ( s ) : − t o t a lM i n t (m) , t o t a l B u r n t ( b ) ,
30 s : =m−b .
31 . . .

records, refer to the example Datalog contract presented in Listing 1,
which includes four main components, as follows.
(1) Relation Declarations: This includes specifying transaction
records ("transfer"), contract states ("balanceOf"), and the recep-
tion of a transaction event (" recv_transfer "). The syntax for these
declarations is structured as "name(field1 : type1, ...) ". When a
relation has a star symbol (*) before its name, it indicates a sin-
gleton relation, meaning it contains a singular row (for instance,
"owner"). There is also the option to denote primary keys, outlined
within square brackets immediately following the declaration. For
example, "balanceOf" designates its first column as the primary
key.
(2) Relation annotations. Certain relations are annotated as pub-
lic (e.g., Lines 7-9). This annotation signifies that they are accessible
by regular Ethereum addresses. Line 7 also annotates three relations
as event. These relations serve as the triggers for the execution
of the associated event-condition-action rules, which will be ex-
plained shortly. Additionally, there are relationships that can be
designated as functions (for example, Line 11), which refers to rela-
tionships identified for on-demand computation rather than storage
in memory (further elaborated in Section 5.3).
(3) Transaction rules. The syntax and semantics of rules are based
on Datalog, except that recursions are prohibited for efficiency [19].
It makes a distinction between two kinds of rules: transaction rules
and inference rules. Transaction rules can be interpreted as event-
condition-action rules, where only particular events can trigger
the evaluation of the rule. Rules at Lines 13-18 are examples of
transaction rules. Each transaction rule contains one and only one
annotated event relation in the body, which is exclusively triggered
upon receiving a corresponding transaction request. The rest of the
rule body determines whether the transaction can be committed.



Figure 1: Relational views of transaction records and contract
states, and their updates on committing new transactions.

Instruction type Gas
Compute 3-10
Memory 3-12

Storage
Load 2,100/100
Store (init) 22100/20,000
Store (update) 5,000/2,900/100

Other vary by data sizes

Table 1: EVM bytecode gas cost model.

Take the rule at Line 13 for instance, the "recv_mint(p,n)" pred-
icate served as the event trigger, because relation "recv_mint" is
annotated as a public event at Line 7.
(4) Inference rules. Inference rules are interpreted as invariants:
updates to any of the body relations will trigger rule evaluation.
For instance, Lines 20-30 define different relations as declarative
queries over other relations.

Given the above specification, executable codes can be generated
to maintain these view relations in an incremental manner: each
committed transaction involves the insertion of a new row into the
corresponding transaction record table, and incremental updates
are applied to all the dependent views (contract states) recursively.

Figure 1 illustrates an example of committing a " transfer " trans-
action. It is interpreted as a new row inserted into the correspond-
ing table. It then updates the dependent relations: " totalIn " and
"totalOut", which trigger updates to "balanceOf". Through this
process, declarative smart contracts automatically maintain the
relational invariants, which are defined as Datalog rules, as new
transactions are introduced.

3 CASE FOR OPTIMIZATIONS
In several permissionless blockchains, e.g., Ethereum, resource quo-
tas (in the form of gas consumptions) are imposed to limit resource
utilization. The goal is to minimize gas consumption for each smart
contract transaction execution.

We motivate the need and potential for query optimizations
through a case study on gas consumption profiling of a representa-
tive Ethereum smart contract. Our example is based on the transfer
transaction of the BNB Token smart contract [4]. BNB Token is
based on a popular cryptocurrency and this particular transaction
bears similarity to the wallet example presented in Section 2.

It should be noted that the EVM byte-code gas cost model, as
shown in Table 1, reveals a significant disparity in costs between
reading and writing to storage compared to compute instructions.
Notably, initiating storage values incurs extremely high gas ex-
penses when a storage slot is set from zero to a non-zero value.

Instruction type Datalog Ref.

memory
read 36 6
write 195 51
others 1,518 1,756

storage read 31,900 4,500
write 13,900 5,800

compute 6,769 1,986
transaction fee 21,570.8 21,570.8
all 75,888.8 35,669.8

Table 2: Gas breakdown of the BNB Transfer transaction.

Table 2 presents a detailed breakdown of gas costs per transac-
tion, categorized by instruction types for the Token BNB contract.
This analysis shows that storage operations are the dominant factor
in overall gas usage, while the transaction fee is a flat fee for all
transactions. In addition, Baseline without optimization shows sig-
nificant inefficiencies in gas utilization compared to the reference
implementation (Ref.), which is meticulously hand-optimized.

Further investigation into the Solidity code produced by the
Baseline compiler uncovers another issue: an excessive number of
function invocations. As the number of relations grows, it results in
complex chains of function calls and updates to those relations. Con-
sequently, a large amount of memory operations are needed to pass
arguments between functions and synchronize the updated values
with the corresponding relations, leading to extra gas consumption.

Similar patterns of inefficiency are observed in other smart con-
tracts as well, emphasizing the need to address these challenges.
Our performance analysis yields two key insights for optimization.
(1) Reduce storage manipulation and usage. Traditional in-
cremental Datalog follows conventional wisdom by materializing
all intermediate tables [17]. These tables are then incrementally
recomputed each time new facts (transactions) arrive. However
in smart contracts, the gas consumption gap between computa-
tion and storage operation is significant, in part because storage in
smart contracts is expensive (particularly if the blockchain ledger
is involved, since that requires running a bandwidth-expensive
consensus protocol).

Consequently, we can consider a view materialization strategy
which selects only a subset of intermediate tables for materializa-
tion, to save gas by minimizing costly storage-related instructions
during the view maintenance process and replacing them with less
expensive computational operations during query execution. To
classify materialization strategies free of such redundancies, we
introduce the notion of "minimal form" in Section 5.2. Note that
multiple methods exist for removing these redundant relationships,
leading to different "minimal" choices of the original redundant plan.
Thus, the selection of the optimal view entails a search process.
In Section 5.4, we will introduce further techniques for narrow-
ing down the search space. This is intended to accelerate both the
processes of retrieving plans and executing simulation tests.
(2) Arithmetic simplification enables view elimination. Through
arithmetic simplification, certain intermediate views can be elimi-
nated by simplifying and removing variables in arithmetic expres-
sions. This leads to fewer required reads of the views and conse-
quently decreases the number of instructions needed for reading
and updating the storage associated with these views.



Figure 2: Overview of DeSCO’s optimization flow.

Figure 3: Imperative control flow.

4 OVERVIEW
An overview of the optimization flow in DeSCO is provided in
Figure 2. This flow comprises two steps critical to optimization;
first, selective view materialization and second, local optimizations.
The overall code generation and optimization flow are as follows:
(1) DeSCO converts declarative rules in a Datalog contract into
an imperative control flow, which validates incoming transactions
and maintains all declared relations when a valid transaction is
committed. Unlike conventional Datalog engines, DeSCO further
optimizes the imperative control flow by identifying differentiable
fragments in the rules to streamline the imperative control flow.
(2) By leveraging information from the original Datalog contract
and generated imperative control flow, DeSCO performs selective
view materialization, to selectively store a subset of declared re-
lations in persistent storage. It is crucial as it determines the pro-
gram’s overall structure and significantly contributes to gas savings.
(3) Once the imperative control flow and the view materialization
plan are established, DeSCO applies various local optimizations
to each update procedure. These optimizations, including index-
ing and read projection, collectively enhance the efficiency of the
implemented smart contract.
(4) Finally, DeSCO compiles the execution plan to Solidity and
generates executable code for the Ethereum platform.

We next illustrate these four steps using the token management
contract, presented in Listing 1.
Imperative control flows. Figure 3 depicts an imperative control
flow example, where each code block is generated from a rule
𝑟 and a corresponding update to a relation in 𝑟 ’s body. The top-
left code block is generated from the rule at Line 17. When the
contract receives a transfer request with parameters, it initially
searches the "balanceOf" table for a tuple "(p,m)" that satisfies
two constraints: "p==s" and "m>=n". If such a tuple is found, it
then checks two conditions, which are directly derived from the

Figure 4: Relation dependencies in the Wallet contract.

remaining part of the rule body. Since the relation "canSend" is
defined to be computed on demand, the predicate "canSend(s, r )"
is implemented as a query on other relations, depicted by the red
dotted arrow. The code for this query is displayed in the top right
portion of the figure, and it is generated from the rule at Line 20 in
Listing 1. If all conditions are met, it inserts a new " transfer " tuple,
which triggers updates to other dependent relations, depicted by the
blue dashed arrow. The updates are shown in the bottom portion.
These updates are recursively triggered until no dependent relations
can be updated. The remaining part of the update procedure is
omitted for conciseness.
Selective viewmaterialization.With the imperative code, DeSCO
chooses a subset of relations to be materialized. Recall from Sec-
tion 3 that the high storage cost of public permissionless blockchains
requires a storage-efficient view materialization plan. This distinc-
tion calls for a fundamental overhaul of the materialization strategy,
departing from traditional approaches where storage efficiency is
not a primary focus and is often sacrificed for time efficiency.

The goal of viewmaterialization is to answer all relational queries
efficiently in the imperative control flow. Intuitively, a relational
query 𝑅(𝑋 ) can be answered in two ways: (1) directly read from
memory, for the case where relation 𝑅 is materialized; or (2) derive
from its defining rules, for the case where 𝑅 is not materialized.
Identifying all possible view materialization plans requires analysis
on the dependency among different relations.

Figure 4 visualizes the dependency among relations in the wallet
contract. For instance, "totalSupply" can be derived from "allMint"
and "allBurn". This suggests that, in order to answer queries to
"totalSupply" (declared as a public query interface at Line 9), we do
not need to store all of the relations: either storing only "totalSupply",
or storing "allMint" and "allBurn" is sufficient.

One may think that storing only query results can solve this
problem, obviating the on-demand computations and storage for in-
termediary relations. However, this is not always the most efficient,
considering the view maintenance cost. Due to the dynamic nature
of smart contracts, characterized by frequent transaction commits,
the associated view update procedure could incur substantial gas
costs. To see this, consider the "canSend(p,q)" relation defined at
Line 20 in Listing 1: "p" can send to "q" if both of them have permis-
sion "permission(p)", "permission(q)". Maintaining "canSend(p,q)"
means that on every update to the "permission", one has to iterate
through the "permission" table to generate new "canSend" tuples.
In this case, the best strategy is to materialize "permission" instead,
and evaluate queries to "canSend(p,q)" on demand.

These two examples highlight the primary and contradictory
factors influencing view materialization decisions: query execution
cost and view maintenance cost. The proactive maintenance of query



Figure 5: Indexing and read projection.

results can reduce query execution costs but may incur high view
maintenance expenses due to substantial storage overhead and
frequent storage operations. Conversely, maintaining a minimal set
of relations can reduce view maintenance costs but may increase
overhead during on-demand query execution.

Section 5 introduces our algorithm to select themost gas-efficient
view materialization plan. In particular, it first applies arithmetic
optimization on the imperative control flow, then prunes the view
materialization space following certain elimination rules, and finally
estimates the gas cost for each remaining viable view materializa-
tion plans via profiling on a local simulation blockchain.
Local optimizations. Given the imperative control flow, DeSCO
further optimizes gas usage within each code block. Figure 5 illus-
trates the optimized block derived from the left side of Figure 3.
Firstly, an index is added to the "balanceOf" relation, thereby econ-
omizing on iterations to locate tuples with the address "s". Secondly,
read projection is applied to the reading of the "balanceOf" tuple,
where only the second column is read, circumventing the need
to read the entire tuple and subsequently project the second col-
umn. These optimizations contribute to a more resource-efficient
maintenance of contract states.

5 SELECTIVE VIEWMATERIALIZATION
In this section, we first introduce view elimination techniques
through arithmetic expression simplification. Next, we establish the
validity of a materialization plan based on the optimized imperative
control flow. Then, we introduce an algorithm that systematically
identifies all minimal valid materialization plans and determines
the most gas-efficient option through profiling.

5.1 View Elimination
The imperative control flow programs are responsible for main-
taining the relations defined by the Datalog rules, as depicted in
Figure 3. The compilation process that generates the imperative
control flow is divided into two phases. First, it identifies the set of
potential updates that may occur while the smart contract is being
executed, such as the insertion, deletion or update of a relational
tuple. And second, once the set of updates is determined, it converts
the rules into imperative maintenance procedures which generally
consists of lookup of relational tuples in the rule body, validat-
ing the rule constraints, and generating updates to the rule head.
Note that the updated rule head can further trigger the updates to
following associated rules. Given this control flow, we introduce
arithmetic optimizations to further eliminate intermediate views
and variables.

Figure 6: Incremental update without (left) and with (right)
arithmetic optimization.

Consider the rule at Line 25 in Listing 1, which is displayed
at the top of Figure 6 for ease of reference. This rule defines the
balance of an address "p" as the difference between the sum of its
incoming transfers " i " and the sum of its outgoing transfers "o". Let
us assume a new transfer " transfer (p,q ,10) " is committed, leading
to an increment of "totalOut[p]" by 10. If we were to interpret this
rule as a regular join rule, as depicted in the bottom-left portion of
Figure 6, the incremental maintenance procedure would involve
retrieving the sum of incoming transfers of "p", storing it in local
memory as " i ", and then computing the new balance by subtracting
"o" from " i ". However, upon analyzing the arithmetic operator, we
can deduce that the update to "n" is −10. This insight gives rise to
a simpler update approach, as demonstrated in the bottom-right
section of Figure 6: we can directly decrement "balanceOf[p]" by
10, eliminating the need for storage retrieval and local computation.

In essence, we are trying to identify a differentiable fragment of
the update procedure that allows us to calculate the update to the
dependent relation solely based on the difference in the updated
body relation, without referring to the concrete value of it. In the
above example, "totalOut[p]" is such a differentiable fragment.
Since this update is agnostic to the concrete value of "totalOut",
and there are no other places that read the "totalOut" relation, we
can eliminate "totalOut" from the imperative control flow. Similarly,
" totalIn " can also be eliminated. Overall, the idea of differentiable
fragment here is general and can be extend to addition, subtraction,
aggregation, count, and even multiplication.

DeSCO identifies such differentiable fragments by checking all
update procedures to all rules, and eliminates the corresponding
read operations to the corresponding relation. After this pass, De-
SCO eliminates relations that are not read by any update procedure
from the imperative control flow.

5.2 Materialization Plan Validity
A materialization plan refers to a set of relations to be materialized
(maintained in persistent storage). The plan is valid if and only if
all relational queries in the imperative control flow can be executed
using the materialized views.
Executable relations. The executability of a relation can be de-
termined by the existence of the queried tuples in the associated
relational table, or the fact that it can be derived from other exe-
cutable relations following the associated rules. Specifically, the
executability of a transaction or query is established on the notion
of executability of a relation. A query is executable if the associated
relation is executable, and a transaction is executable if all relational
queries in its imperative control flow are executable, while the im-
perative control flow can be optimized by arithmetic simplification.



For instance, the relation " recv_transfer " is annotated as public
at Line 7 of Listing 1. The rule outlined at Line 17 defines the start
of the execution flow of a transfer transaction: it is triggered by a
" recv_transfer (s , r ,n)" event and subsequently evaluates the ex-
ecutability of the body predicates, namely "balanceOf(s ,m)" and
"canSend(s, r )". If the transaction parameter is legitimate ("n > 0"),
the sender "s" can send to the receiver "r", and the sender has a suffi-
cient balance ("m >= n"), the transaction proceeds to update depen-
dent relations. Specifically speaking, a " transfer " tuple is inserted,
which triggers the updation of " totalIn " and "totalOut" according
to Lines 21 and 23. This further triggers updating "balanceOf" at
Line 25, which leads to the end of this execution flow. Then based on
the arithmetic optimization, " transfer ", " totalIn ", and "totalOut"
can all be simplified from the imperative control flow. Note that
considering the sum operator on " transfer " records, the updated
amount of the body relation each time can be understood as the
concrete value of the newly inserted " transfer " record while we
can fulfill the aggregation using only this updated amount with the
arithmetic optimization.

This example illustrates that the relations "balanceOf" and "canSend"
are necessary to be executable to determine the legitimacy of
the received transaction. Suppose we have a view materialization
plan that materializes neither "balanceOf" nor the two relations
"allMint" and "allBurn" that can establish "balanceOf"; in that case,
this view materialization plan is deemed invalid since it cannot
answer relational queries to "balanceOf", thereby compromising
the executability of the transaction.

From these examples, we see how the executability of a relation
is connected with the functionality of a declarative smart contract.

Valid materialization plans. Given the notion of executability
of relations, we define the validity of a view materialization plan:
Let P be the set of relations obtained by the imperative control flow,
a materialization plan V is valid if and only if for every relation q
in P, q is executable based on the materialization plan V.

Minimal Materialization Plan. Minimal materialization plan
is defined as a special set of relations which (1) is a valid material-
ization plan, and (2) can not form a valid materialization plan if we
remove any relation(s) from it.

5.3 Space Pruning Patterns
Constructing a precise cost model for smart contracts is challenging.
However, with insights from Ethereum smart contract execution
and cost models, we can differentiate between efficient and less
efficient view materialization plans. Specifically, identifying pat-
terns that highlight inefficiencies allows us to eliminate such plans
during the enumeration, significantly narrowing the search space.
(1) Relationminimality. Non-minimal view materialization plans
are converted to their minimal forms by removing redundant rela-
tions from the materialization plan.
(2) Join complexity. Relations defined by rules that involve consid-
erably costly join operations are not materialized. DeSCO employs
a heuristic to estimate the join cost: if a join operation cannot
benefit from index optimization and requires looping through a
table, it is considered expensive and thus unsuitable for runtime
maintenance. Illustrated by the example in Section 4, materializing
the "canSend(p,q)" relation incurs significant overhead due to each

insertion into the permission relation triggering a loop through
"permission" itself. Conversely, during runtime querying, by in-
dexing the permission relation, the query "canSend(p,q)" can be
efficiently resolved with just two read instructions. Therefore, De-
SCO identifies such expensive joins and opts to represent the head
relations, like "canSend(p,q)", as functions, as detailed in Section 2.
(3) Aggregations. On the contrary, relations defined by aggrega-
tion rules are generally deemed expensive to be queried on run-time
and are always maintained incrementally. A detailed example is
provided in Sec 5.4 to explain the usage of this rule.
(4) Transaction relations. Transaction relations (with the "recv_"
prefix) are reserved as triggers for incoming transaction requests,
and thus are not considered for materialization.

5.4 Minimal Materialization Plan Enumeration
In this section, we explain how our algorithm can generate mate-
rialization plans. Given the input smart contract, we enumerate
every valid minimal materialization plan in the simplified serach
space and return the set of such minimal plans as the output.

The algorithm starts with a minimal base materialization plan
and creates a supplementary data structure known as the replace-
ment graph 𝐺 . This graph 𝐺 is built based on the dependency
information obtained from the set of all contract rules 𝑃 . Then
this algorithm enumerates all minimal alternative materialization
plans in a breadth-first search fashion based on the replacement
graph 𝐺 . Starting from the initial choice, namely the minimal base
materialization plan, it iteratively generates alternative plans for
each potential materialization plan by substituting relations with
others that can calculate them as needed, based on the dependency
information provided by the replacement graph 𝐺 . Finally, the set
of alternative replacement materialization plans is also turned into
their minimal forms which are then included in the final solution.
Base materialization plan. This base plan represents the read-
only approach: storing all relations that could be accessed during
transaction execution or public queries, without any on-demand
computation. It is then reduced to the minimal form.

For instance, the base materialization plan for the wallet con-
tract in Listing 1 initially includes relations like "totalSupply",
"balanceOf", and "permission". Through arithmetic optimization,
relations such as "totalMint", "totalBurn", " totalIn ", and "totalOut"
are simplified from the control flow and therefore not included in
the base plan. Moreover, following the discussed pruning tech-
niques, "permission" is materialized in the base plan instead of
"canSend", since the latter is more efficient to be queried on demand
than incrementally maintained in storage. Additionally, transaction
records like "mint", "burn", and " transfer ", which are inserted in
response to incoming transactions and not revisited later, are also
omitted from the base plan.
Construct replacement graph. We now showcase the process of
constructing the replacement graph. Given rules 𝑃 in a Baseline pro-
gram, for each relation 𝑣 in 𝑃 , the set of 𝑣 ′𝑠 defining rules 𝑅 consists
of rules whose head relation is 𝑣 . Generally, it is feasible to materi-
alize all the defining relations of 𝑣 and calculate relational queries
to 𝑣 whenever necessary. Consequently, for each defining relation
𝑢 of 𝑣 , an edge from 𝑢 to 𝑣 is included in the replacement graph𝐺
to signify that relation 𝑣 can be computed using information from



relation 𝑢. Figure 7 shows the replacement graph constructed from
the example contract in Listing 1.

For example, consider the following rule that defines the relation
"totalSupply", taken from Line 29 in Listing 1:

t o t a l S u p p l y ( s ) : − t o t a lM i n t (m) , t o t a l B u r n t ( b ) , s : =m−b .

It defines "totalSupply" as the difference between the sum of
the minted amount ("totalMint") and the sum of the burnt amount
("totalBurn"). Based on this rule, two edges are added to the re-
placement graph: ("totalSupply", "totalMint") and ("totalSupply",
"totalBurn"). Consequently, it is possible to choose not to material-
ize "totalSupply" but insteadmaterialize "totalMint" and "totalBurn".
When queried, the value of "totalSupply" can be computed from
these two materialized relations. Note that even "totalMint" and
"totalBurn" are not required to be executable in the imperative
control flow, they can still be chosen to be materialized to support
the executability of "totalSupply" by computing.

Figure 7: Replacement graph of the Wallet contract.

Given the replacement graph, we now can generate alterna-
tive plans by substituting a relation in an existing materialization
plan with its defining relations. For example, given a plan 𝑉 that
includes "totalSupply", this algorithm can replace "totalSupply"
with "totalMint" and "totalBurn" as a new materialization plan.

5.5 Selecting Optimal Plan
Given all valid minimal materialization plans, DeSCO picks the
most efficient one through profiling on synthetic transaction traces.
The details of synthetic trace generation are described in Section 6.

The profiling trace provides an approximation of the gas expen-
diture for each type of transaction. However, there is still an impor-
tant question that needs to be addressed: how to optimize across
all transaction types? For instance, the ERC20 standard includes
various transaction interfaces, but most ERC20 contracts today are
dominated by the " transfer " transaction, while other transaction
types like "mint" and "burn" are executed less frequently. If the ob-
jective is to minimize the overall gas cost on the actual deployment
workload, the optimal approach would be to prioritize the materi-
alization plans that incur the least gas overhead for the "transfer"
transaction.

Given the disparity of execution frequency among different trans-
action interfaces, DeSCO accepts the expected execution frequency
of each transaction type as an optional input. If the expected trans-
action frequency is given, DeSCO employs the weighted average
of the transaction gas cost as an estimation of a smart contract
efficiency metric. Otherwise, the average is used instead, assuming
that the transaction types follow a uniform frequency distribution.

6 EVALUATION
We evaluate our optimization techniques by comparing the end-
to-end gas cost with several baselines. The goal is to ensure that

the code generated by the automatic optimizer can match the per-
formance of hand-optimized reference implementations. We imple-
ment the optimizer on top of the DeCon compiler. The optimizer
is evaluated on the 13 most popular token contracts sourced from
Etherscan [1] and OpenZeppelin [3]. All benchmarks and complete
evaluation results are available online [2]. Experiments are run on
Ganache, a local Ethereum simulator from Truffle [5].

6.1 Profiling Set Up
Contract benchmarks. We select 13 popular real-world contracts
that can be supported by Datalog semantics. We prepare and adjust
the Datalog logic to let its declarations of public interfaces match
with the corresponding open-source contract, such that we can
evaluate the Datalog-generated versions and the reference imple-
mentations using the same workload.
Synthetic workload.We generate synthetic workloads for each
benchmark contract transaction type (e.g., "mint", "transfer", etc.),
with randomly generated parameters. The main reason is that via
experiments we found the actual parameter values of an incom-
ing transaction generally have little impact on the gas consump-
tion which is dominated by the number of storage operations. Be-
sides, many of the contracts lack enough real-world data from the
blockchain platform like Ethereum. To capture the stable gas cost,
we use the first transaction as the warm-up call and average the
gas of the subsequent 10 transactions as the final estimation.
Transaction Frequency. For each contract, we count the actual
number of occurrences of each transaction type from the most
recent 10,000 transaction records on Etherscan, and converted them
into frequencies. As in Sec 5.5, by combining these frequencies with
each transaction’s gas cost, DeSCO can calculate a weighted average
gas consumption of the contract. In the experiment, if the contract’s
frequency data is available and relatively stable in the period, we
adopt this method of frequency-weighted averaging. Otherwise,
we directly use the average of all transactions to select the best
DeSCO optimized version and compare it with the other baselines.
Profiling. In the experiment, we compare three approaches:

• Incremental Datalog: Vanilla incremental Datalog execu-
tion without optimizations.

• DeSCO: Smart contracts are written in Datalog and then
the full suite of optimizations are applied.

• Reference:We select popular Solidity programs that are
active in the open source and are supported by Datalog
semantics, either from Ethereum or previous works. These
programs have extensive manual optimizations performed
by multiple stakeholders.

Note that optimizations of read projection and indexing are not
our main focus of research, so we implement these techniques in
all the compiler generated versions including Incremental Datalog.
In addition, since the triggers and records of each transaction are
normally not stored by the blockchain, they are not in the domain of
materialization and are also excluded from the Incremental Datalog.
Profiling cost. The profiling cost for DeSCO is affordable. Firstly,
the materialization plan generation is one-time and would finish
within 1 minute. Besides, the number of minimal materialization
plans of each contract is often limited, e.g., generally less than 10
and up to 16 in BNB contract, due to the small number of relations



Contract Datal. Ref. DeSCO IR(Dl) IR(Ref)
Erc20 67 35.6 37.2 44% -4%
Erc777 81.44 44.78 43.89 46% 2%
BNB 72.99 35.25 35.53 51% -1%
Controllable 63 35.22 35.78 43% -2%
Link 69.46 34.73 35.81 48% -3%
Matic 69.13 37.2 37.06 46% 0
Shib 46 30 31 33% -3%
Wbtc 56.56 37.98 35.4 37% 7%
Auction 60.33 46.67 46.67 23% 0
TokenPartition 126 47.67 45.33 64% 5%
LtcSwapAsset 67.8 40.8 38 44% 7%
Wallet 62 36 36 42% 0
VestingWallet 32 28 32 0 -14%

Table 3: Gas consumption of all contracts on three ap-
proaches.

in each contract and blockchain’s lack of support for complex and
thus expensive contracts. So DeSCO can generate all versions of
solidity programs for all contracts within several minutes. Specifi-
cally, generating one solidity program would cost approximately
one second. Furthermore, for each solidity version of a contract,
running simulation tests using the synthetic workloads for all its
transaction types would take just a few seconds, considering that
testing one type of transaction is generally about 3 or 4 seconds.

6.2 Main results
Table 3 shows that DeSCO matches the performance of the open
source hand-optimized Reference, significantly outperforming Incre-
mental Datalog. The first three columns present the gas cost (unit:
thousand (k)) of all our contracts under the Incremental Datalog, Ref-
erence, and DeSCO. The last two columns compute the improvement
rate of DeSCO over Incremental Datalog and Reference respectively.
Improvement over Reference implementation. For some con-
tracts (e.g., Erc777 and Wbtc), DeSCO slightly outperforms the
carefully hand-tuned Reference. This is because DeSCO reads and
materializes only the necessary relations. Considering the case
where a non-expert Datalog programmer may define a lot of auxil-
iary relations, DeSCO’s selective view materialization yields great
benefit by consistently materializing the minimal number of re-
lations. In addition, DeSCO consistently applies read projections,
which is neglected in some Reference implementations.
Cases where DeSCO is less efficient thanReference implemen-
tation. We identify contracts (e.g., Erc20 and BNB) where DeSCO
performs a bit worse than Reference. In this case, although DeSCO
does not materialize more relations than Reference, there are some
code-level optimizations to be leveraged. For instance, Reference
implements self-increment and self-decrement of variables using
𝑎 + = 𝑏 and 𝑎 − = 𝑏, while in the compiler, we always generate
𝑎 = 𝑎 + 𝑏 and 𝑎 = 𝑎 − 𝑏 which cost extra gas based on a controlled
experiment. Function inlining is another contributing factor to the
better performance of Reference. While Reference implementation
has the complete transaction logic written within one or two func-
tion(s), DeSCO generates update functions for each Datalog rule,
and executes the transaction logic in a chain of function invocations.

Note that these features are not the primary focus of this project,
as their impact on the contract’s gas cost is deemed insignificant.
Moreover, they are well-known standard optimization strategies
that can be incorporated into future versions of DeSCO.

Instruction type Datalog Ref. DeSCO

memory
read 36 6 6
write 195 51 63
others 1,518 1,756 1,518

storage read 31,900 4,500 4,300
write 13,900 5,800 5,800

compute 6,769 1,986 3,092
transaction fee 21,570.8 21,570.8 21,570.8
all 75,888.8 35,669.8 36,349.8

Table 4: Gas breakdown of the BNB Transfer with DeSCO.

For the "vestingWallet" contract, DeSCO shows little improve-
ment over Incremental Datalog, and has a bigger performance gap
compared to Reference. Upon further investigation into the compiled
Datalog program, we find there are just a few relations declared,
which are all required to be materialized, bringing limited optimiza-
tion space for DeSCO’s selective viewmaterialization technique. On
the other hand, "vestingWallet" uses a combination of conditions,
thus based on the true or false value of each condition, there are
multiple if-else branches. However, in different branches, the con-
tract is reading the same relations. Reference reads all the relations
once before the executing of all the following branches, while in
Datalog semantics, each rule can only represent one branch, caus-
ing DeSCO to read all the relations again in the functions generated
for different rules representing different branches, and thereby con-
suming more gas. In summary, this performance degradation is
primarily affected by the limitations of Datalog semantics, while it
is possible to improve it by exploring rule sharing later.
Gas breakdown study after optimization.As depicted in Table 4,
DeSCO significantly reduces storage compared with Incremental
Datalog, matching that of Reference. Computation cost is also re-
duced by up to 50% from the Incremental Datalog baseline. The
computation overhead over Reference is caused by code-level op-
timization discussed earlier. While the difference of the memory
other gas consumption between Reference and DeSCO is due to dif-
ferent event logging mechanisms, this has little impact on the result
analysis. While we take BNB transfer transaction as an example,
other contracts and transactions hold these trends in gas reduction.
This result demonstrates the effectiveness of DeSCO.

7 RELATEDWORK
Smart contract optimization. Extensive studies have been con-
ducted on optimizing Solidity code or the underlying EVM byte
code. For instance, (1) super optimization of the EVM bytecode [10],
(2) anti-pattern detection [18, 22] in the source code, and provide
partially automatic optimization, and (3) program data structure
transformation [19], which is automated via program synthesis tech-
niques, with extra annotation on the desired data structure. While
these tools are applicable to general smart contracts, they mainly
focus on lower-level local optimizations and omit more global opti-
mizations that a higher-level abstraction can provide. Moreover, a
declarative programming approach focuses on executable specifi-
cations (which have other benefits) such as verifiability.
Declarative contracts. In the legal domain, declarative languages
are used to implement and reason about contracts [8, 23, 31]. The
prior work largely focuses on using logic as a specification lan-
guage to uncover legal conflicts [12]. DeCon [17] is a declarative
programming language for implementing smart contracts. Its key



innovation is the introduction of a declarative view of smart con-
tracts. However, unlike our work, the previous studies did not
address the execution efficiency of declarative languages, nor did
they consider how to leverage database query optimization tech-
niques. Our work is the first to address the execution efficiency of
these languages and to consider how to leverage database query
optimization techniques.
Datalog for smart contract analysis. In addition to program-
ming, Datalog has also been applied to smart contract analysis.
Securify [39] uses Datalog to identify security patterns in smart
contract bytecodes, and Ren et al. [32] analyze based on semantic
facts extracted from contract source code.
View selection.Materialized views arewell studied in the databases
field [29]. Research in this area involves tackling various prob-
lems, such as rewriting queries using materialized views [24] and
selecting appropriate views for materialization [20]. View selec-
tion algorithms can be classified based on several factors, namely
query workload, objective functions and constraints, search space
of views, and search algorithms for view materialization. Our view
selection approach has the following key differences: (1) targeting
an OLTP-like Datalog workload instead of OLAP; (2) reducing gas
consumption by minimizing storage cost; and (3) representing the
search space as a logical graph because each view has a unique
dependency on other views/relations defined by Datalog rules.

8 CONCLUSION
This paper proposes a declarative approach to smart contract opti-
mization, using high-level programming to generate gas-efficient
implementations automatically. Our measurements showed that
storage operations are the main Ethereum smart contract overhead.
We achieved promising results in real-world contract evaluations by

applying traditional query optimizations and introducing novel se-
lective view materialization. This approach closes the performance
gap between automated and expert-tuned code, providing efficient
solutions and easier development for non-experts. Targeting at
non-expert programmers, our idea can even facilitate the use of
other languages like SQL for writing smart contracts, and provide
insight for improving other open-source Solidity contracts without
carefully manual optimization.

As immediate follow-on work, we will enhance and explore more
techniques applied to our declarative smart contract optimizing
system while expanding the declarative language’s capability to
express all types of smart contracts, including the recursive ones
and non-independent contracts which are related with each other.
Except for strong practicality, we also aim at a complete system
with rigorous formal definitions and proofs. Despite the challenges
mentioned in Sec 1, in the long term, having an accurate gas cost
model will be most effective at finding optimal executiion plans. To
this end, we plan to develop an accurate gas cost model based on
predefined formula without actual simulation that is both efficient
and compatible with the evolving Ethereum platform.

Our work lays the foundation for several exciting avenues of fu-
ture work. We intend to explore the impact of declarative program-
ming in the context of permissioned blockchains, where batch par-
allelism could greatly enhance smart contract performance. Multi-
query optimizations where similar transactions share overlapping
work can potentially further reduce resource utilization and, in fact,
enable our approach to outperform hand-written implementations
– a task made feasible through our use of Datalog. These future
directions hold great promise for advancing the field of declarative
programming for smart contract development and enhancing the
overall efficiency and effectiveness of decentralized applications.
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