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ABSTRACT

In this paper, we introduce CroCRPC, a Cross Chain Remote
Procedure Call (RPC) framework which can be used to interact
between applications distributed across multiple blockchains. It pro-
vides a mechanism of communication between different blockchain
networks, allowing the exchange of data, assets and transactions
in a secure and efficient manner. It requires the deployment of Cro-
CRPC smart contracts in each of the chains that the user wants
to interact with. There are two interfaces offered by CroCRPC as
bundles that are used to implement the participating contracts -
the Server Bundle and the Client Bundle. The server contract,
also referred to as callee should necessarily have an exhaustive
list of the library functions that need remote calls support. Finally,
the server also requires the implementation of a Node.js polling
process (integrated into the CroCRPC server bundle) running for
each individual application contract that handles the delivery of
responses back to the source contract (the caller). The guarantee
and integrity of message delivery across chains is handled by the
LayerZero framework.
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1 INTRODUCTION

With the rise of decentralized applications and the increasing adop-
tion of blockchain technology, the need for interoperability between
different blockchain networks has become paramount. Frameworks
like LayerZero [16] and Axelar [17] have already made huge
strides in the area of cross-chain message transport frameworks,
while Polkadot [2] has been instrumental in building an interop-
erability hub. In this paper we propose CroCRPC: Cross-Chain
Remote Procedure Calls Framework for dApps, built one level
on top of LayerZero, that will be particularly important for the
development of advanced decentralized applications that require
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interactions between multiple blockchain networks. It allows a
contract to act as a remote procedure host, whose APIs and end-
points can be invoked from Client contracts hosted on the same or
different chains. Sample use cases can be decentralized exchanges
(DeXs) allowing users to swap their tokens across chains without
requiring an intermediary token. Similarly, lending and borrowing
protocols can also use CroCRPC to transfer assets across chains.

In this paper we first review current research in this domain, and
existing solutions that partially solves the problem of cross-chain
communication. We also briefly discuss low-level message transport
layer protocols that perform the heavy-lifting for sending payloads
across chains, while ensuring features such as guaranteed delivery
and trustlessness. Then we describe the CroCRPC framework. We
introduce the notions of the Client Bundle, which users can inherit
to invoke remote procedures located elsewhere, and Server Bundle,
which needs to be inherited on the host applications allowing RPC
functionality. This includes the polling process that is vital to sending
back responses to the client. This is followed by a couple of real
world example applications that use our framework to cater to users
across chains. We end with a brief discussion about our evaluation
metrics in terms of latency, gas cost and scalability, which are
important factors that need to be understood before developing a
cross chain application. The current implementation of CroCRPC
is provided in Solidity [4] and it supports chains belonging to the
Ethereum [7] universe. The server process is offered in Node.js
[1] but can be easily extended to other languages as long as they
support the Ethereum JSON RPC APL

2 BACKGROUND

The birth of Bitcoin led to an explosion of multiple Layer 1 block-
chains with their own set of applications. While most of these
distributed ledgers had their individual use cases, they operated
in their own silos [20] with their exclusive set of applications, to-
kens, mining incentives and consensus mechanisms for adding new
blocks into the network. Without meaningful interaction between
applications across chains, such applications will have reduced
usage since users want to stick to their blockchain of choice, addi-
tional overheads of converting one kind of token to another and
implementation difficulties for cross chain message communication
in terms of reliability, trustlessness and guaranteed delivery.
A medium of communication between these chains was hence
deemed extremely essential for the proliferation of blockchains. A
lot of research has incrementally added trustless messaging layers
between these chains, but their implementation is still rudimentary
and requires massive programming efforts to shape it into applica-
tions that can coexist on multiple chains. A remote procedure call
framework for blockchain applications, hence, in our opinion,
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will bring significant benefits to end-users wanting to make their
distributed applications available across multiple chains.

2.1 Remote Procedure Calls

Communication in distributed systems is characterized by transfer
of information between programs residing across different hosts
[6] (or smart contracts, in the case of blockchains). Traditionally
remote procedure calls (RPCs) are expected to behave similar to
local method calls via a suitable layer of abstraction [6]. The key
difference is that the calls and information flow are made over the
network and the failure in one autonomous process generally does
not affect the other. An error in the callee procedure can be detected
by the absence of a response to the caller, or by receiving an error
code.

These isolation and failure detection capabilities are generally
the prime benefits of having a system broken down into services
and one of the reasons RPCs are preferred over a single monolith.
In terms of blockchain, it is the only way to call procedures avail-
able in a host smart contract from an application residing on a
different chain. Another important notion of remote calls is the
unreliability of the message transfer medium. Since messages are
transmitted over the internet, packet losses, message tampering and
ordering inadequacies are quite common. For blockchains, there
is the added complexity of ensuring trustlessness and guaranteed
delivery (discussed in Section 3.1.2).

2.2 Related Work

This section builds an understanding on the current research being
done in this domain and explains how CroCRPC tries to bridge the
gap in cross chain RPC space.

Ethereum JSON RPC API [14] is developed by the Ethereum
foundation. JSON is a lightweight data interchange format. It can
represent all common data types in computer science. The Ethereum
JSON RPC is a set of APIs designed to allow software developers in-
teract with the Ethereum blockchain by reading blockchain data or
sending transactions to the network. Via these libraries, developers
can deploy new contracts, change the state of a contract, invoke
procedures on a smart contract to execute some functionality or
develop Uls to abstract the details of a contract. The Ethereum
JSON RPC is the basic building block for developing and interacting
with smart contracts in the Ethereum domain but it falls short of
providing a way for smart contracts to be able to invoke procedures
from a contract residing on a different chain.

Cross Framework [11] allows for the development of cross
chain smart contracts that can access and invoke remote procedures
from other chains. It is designed to support enterprise distributed
ledger systems such as Hyperledger [19] and Tendermint [12]
along with traditional Ethereum blockchains. It is built on top of the
IBC [8] message transport layer for cross-chain communication.
Cross provides framework support for multiple atomic commit
protocols and a state store that supports committing, rollback, and
concurrency control for contract states. CroCRPC provides similar
functionality to the Cross framework but has a thinner client than
Cross and is built on top of the LayerZero communication protocol,
which in itself is thinner than IBC and relaxes the full on-chain
header synchronization assumption required by IBC. This leads

to lesser setup time and smaller generated contracts. IBC’s hard
requirement for deterministic finality prevents Cross from working
on heterogeneous ledgers with varied network topology which
can be achieved with CroCRPC based on LayerZero. We elaborate
on this in Section 3. Currently, CroCRPC only provides clients in
Solidity, whereas Cross also provides options in GoLang [15].
Polkadot [2] is a Layer 0 blockchain and an interoperabil-
ity hub that provides the infrastructure on top of which users
can build their own Layer 1 application-specific blockchains called
parachains. It allows unrelated parachains built in the Polkadot
framework to send not just tokens and assets but any kind of data
and information between them. To achieve this, Polkadot uses a
relay chain which is responsible for shared network security, con-
sensus, and interoperability. The relay chain validates data and
ensures that it is understandable across the board. It also has the
concept of bridges to interact with external chains such as Bit-
coin, but does not provide native RPC functionality for traditional
Ethereum-like Layer 1 networks. CroCRPC is an attempt at imple-
menting a plug-and-play interface, which does not need the user to
perform any heavy lifting in terms of integration work or being able
to speak a "custom language" to support cross chain applications.

3 CROSS CHAIN COMMUNICATION
PRIMITIVES

The key motivation for sustained research on cross-chain commu-
nication protocols is interoperability, which refers to the ability
of users and decentralized applications (dApps) to interact seam-
lessly across blockchains. Capabilities include the ability to read the
state of contracts on external blockchains, send messages across
blockchain boundaries or move assets across chains. Blockchain
bridges connect two chains and allow users to send assets across
chains but building bridges one by one for all combinations of Layer
1 chains is difficult. Also, redundant effort to build ad-hoc bridges
might come at the cost of security risks [5]. That is where com-
munication protocols such as LayerZero come into the picture and
resolve the problem by providing frameworks that can be used to
send cross chain messages without additional set up.

3.1 LayerZero

LayerZero [16] is a message transfer protocol that provides trust-
less valid delivery of messages across blockchains. In this paper, we
have used LayerZero as the transport layer underneath CroCRPC.
We describe in brief the LayerZero components, protocol and end-
points and how they form the building blocks behind our CroCRPC
abstraction.

3.1.1 Components and Protocol. LayerZero endpoint is the main
user facing interface. Every chain supported by LayerZero has
the LayerZero components implemented as a sequence of on-chain
smart contracts. The endpoint consists of four modules: the Commu-
nicator, Validator, Network, and Libraries. The first three comprises
the core functionalities of LayerZero while every chain supported
is implemented as an additional library. LayerZero also uses an
Oracle, which is a third party service that reads a block header and
transfers it to a different chain. In the default implementation of
LayerZero, Chainlink [13] is used as the oracle component, which,
however can be reconfigured. LayerZero also uses a Relayer, which



computes a Merkle proof that a transaction was indeed included in
the block and forwards the proof of the transaction.

3.1.2  Message Transfer Features. For bridging, LayerZero needs
to securely determine when a particular transaction is finalized on
the initial chain for which it utilizes the Oracle and Relayer. It guar-
antees the following two features for every cross chain transaction.

Trustlessness: Users do not need to trust the components of
LayerZero. Instead, it requires a weaker condition of independence
between the Oracle and Relayer.

Valid Delivery: LayerZero guarantees valid delivery as long as
there is no collusion between the Oracle and the Relayer, since it
is statistically impossible to send a transaction proof that can be
validated against a block header without knowledge of that specific
block header, and vice versa.

3.2 Inter-Blockchain Communication Protocol

The Inter-Blockchain Communication (IBC) Protocol [8] is
used to handle authentication and transport of data between two
chains. Unlike most trusted bridging technologies, IBC provides a
permissionless way for relaying data packets between blockchains.
IBC implementations exist for blockchain networks such as Hy-
perledger Fabric and Corda [10] and is used as the transport
layer for the Cross framework referenced in Section 2.2. Unlike
LayerZero, IBC uses no third-parties and hence does not have any
additional trust considerations. IBC consists of the transport layer
which is responsible for transporting, authenticating and ordering
data packets and the application layer which builds on top of the
transport layer and specifies how data packets need to be inter-
preted. Using LayerZero instead of traditional IBC for CroCRPC
has certain advantages. IBC’s Transport Layer governs how light
clients store and verify data, perform connection handshakes, and
establish message channels. It is a full light client implementation
that requires explicit on-chain full header synchronization for the
handshake to succeed. In contrast, LayerZero relaxes this assump-
tion by streaming block headers from the Oracle on-demand which
is an efficient way of achieving full header synchronization state
through an off-chain entity. Another disadvantage of IBC’s trans-
port layer is that it can only communicate between blockchains
having deterministic finality. For IBC to work with proof of work
systems, a finality threshold is required. LayerZero natively resolves
the above problem as it allows the Oracle to act as the agent that
enforces the necessary finality threshold.

3.3 Axelar Network

The Axelar [17] stack provides a decentralized network called the
Axelar chain, protocols, tools and APIs that allow for cross chain
communication. It provides a Cross Chain Gateway protocol
that allows the connection of autonomous blockchain ecosystems
to Axelar and a Cross Chain Transfer Protocol which applica-
tion developers can use to connect their contracts to the network
and perform cross-chain method invocations. Validators monitor
Axelar’s smart contracts deployed on connected chains, approve
requests coming through those contracts on chain A and pass them
to chain B to be executed. In contrast, LayerZero relies on two
independent entities called the Relayer and Oracle to bypass the
requirement of the middle chain. The addition of this middle chain

means that while Axelar has a tighter control over its ecosystem, it
requires a lot of resources as compared to LayerZero, including
validators requiring to run nodes that connect to both Axelar and
the external chains. LayerZero on the other hand is extremely light-
weight and cost-effective and incorporating new chains into the
network is faster. The major advantage of LayerZero over Axelar is
the initial deployment speed. Removing the intermediate consensus
layer to allow for direct communication between chains comes at
a minor security risk of introducing third parties in the verifica-
tion framework, which is minimized by the weak requirement of
ensuring zero collusion between the Oracle and the Relayer. This
means that an assumption is made about the Oracle and the Relayer
being independent, honest actors. LayerZero, by design, does not
guarantee that these components are independent but it is left to
the user to ensure that they are.

4 CROCRPC

CroCRPC is a high level interface built on top of the LayerZero
protocol to allow invoking remote procedure calls across chains via
the network. The response is received asynchronously similar to a
callback. This allows the caller to invoke multiple RPCs without the
need of waiting for the results to come back. Given the considerable
time taken to mint transactions and add them to the blockchain, a
roundtrip journey of parameters and responses sometimes take a
few minutes to complete. Hence, it would not be viable to implement
a synchronous system as the program would waste a considerable
part of its runtime waiting for results. CroCRPC uses message
passing via LayerZero endpoints to simulate the RPC invocation as
compared to HTTP requests and responses.

4.1 Overview

CroCRPC implements a Server bundle and a Client Bundle mim-
icking the interaction between clients and servers in an actual RPC
domain [6]. The client bundle emits a message which encapsulates
information about the remote method to be invoked along with
its required arguments. This is similar to the Request phase of an
HTTP call. This message then reaches the LayerZero endpoint on
the source chain before getting to the corresponding endpoint on
the destination chain. On the destination chain, the endpoint for-
wards the message to the smart contract of interest which handles
it. When the response needs to be sent back to the client, a special
polling process provided as part of the server bundle crafts another
message encapsulating the response to be sent back to the client.
It then uses the LayerZero sender method implementation on the
server contract to direct the message back to the client. The route
is exact opposite of the initial route used for the request. Fig. 1
shows the overall path of messages during the RPC invocation. The
purple arrows represent messages that simulate the work of a client
request, while the green arrows represent the server responses.
As an example, lets consider a user wants to invoke Client
Utility 1 which is used to call the Server RPC 1. The utility
function calls the Seriality Encoder inside the Client Bundle to
encapsulate the messages and then uses the LayerZero Sender to
transmit a message. This goes to the on-chain endpoint which in
turn sends a cross-chain-message to the endpoint on chain B. The
message is then transferred to the LayerZero Receiver inside the
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Figure 1: Message Paths during a typical RPC invocation using CroCRPC

server bundle which decodes the message using the Seriality
Decoder. Then it calls the Server RPC 1 and saves the results to
the Pending Results pool. A server polling process linked to the
server contract picks up this result via polling and uses a similar
pathway to respond back to the client contract on Chain A. The
Client UI will have access to this response via the Results data
member.

Owing to the limitations of Solidity, CroCRPC does need to
know the exhaustive list of remote functions available for users to
invoke, and have their signatures preloaded into the server contract
using the CroCRPC server bundle. This leads to certain application
level limitations which are explained in Section 5.3. Every on-chain
application that wants to host procedures that are accessible to
other applications across chains need to implement the receiver
bundle as part of their contract. Similarly, any application that
wants to invoke remote procedures in a different chain needs to
have the client bundle deployed. We explain these two bundles in
more detail below.

4.2 Client Bundle

The client bundle is shown in green in Fig 1, and is inherited in-
side the client Smart Contract that has the necessary dependen-
cies and additional functionality to keep track of the RPC results
received from different chains. It abstracts the LayerZero function-
ality including the send and receive operations and also includes
state variables to store and process results. The Client Bundle also
includes the Seriality Encoder libraries method to serialize the
function name and arguments that can then be sent as a binary
message across the network. An offset variable inside the encoder
is preset to 200 and reflects the length of the longest message that
can be sent to the destination. Any message longer than offset will
be truncated and the client might receive incorrect results or errors.
Another auxiliary method called estimateFees is provided by Lay-
erZero and can be used by the client UI to estimate the amount of
gas that needs to be sent along with the message in order to be

accepted by the blockchain network. Utility functions written in
the client contract can ideally treat the client bundle as a black box
and write application specific code that will run seamlessly given
proper method arguments.

4.3 Server Bundle

The server bundle is shown in light red in Fig 1 and is inherited in-
side the server Smart Contract that has the necessary dependencies
to host procedures that can be invoked from other chains. Similar
to the client bundle it abstracts the LayerZero send and receive
functionality. It has the Seriality Decoder to make sense of the
bytes received from the client. After parsing the payload, the cor-
responding RPC is called which may be present inside the Server
contract or sometimes in a different library. The result is stored
in the pending results pool to be picked up for re-transmission
across the network. Applications hosting functions that can be
used by cross chain contracts need to inherit the server bundle
and treat it like a black box from where function call requests are
received and in turn, send back the results for such calls. Once the
result is written into pending results, the server bundle waits on
the server polling process to send the responses back to the client.

4.4 Server Polling Process

This is an additional process that runs on the server and interacts
with the server contract mainly for sending back responses to the
client. Additionally, it can call the APIs in the server contract, make
state changes, perform actions which require cryptographic primi-
tives and any other functions that require algorithmic privileges.
In our present implementation, the server process waits for 7 sec-
onds before polling again. The reason why we designed a separate
polling process to send results back to the client is twofold.

First, it is easier to send the appropriate gas amount required
to send a message from one chain to another from outside the
contract. We can use custom wallets on each of these chains to
indicate the source from which we want to spend the gas for sending



back the response. Calculating and implementing it from within
the contract is cumbersome and includes complex logic such as
airdropping coins from the client contract. Pushing this outside
to the application code also allows a certain level of flexibility in
customizing the amount of gas that is sent with the message. If
there is a high priority message that needs to be transmitted quickly,
we can increase the amount of gas to make it mint faster. Second, it
allows us to parallelize consumption of messages from the pending
results pool. Compare this with multiple consumers trying to
read from a single queue to dispatch results more quickly. It also
prevents the LayerZero methods inside the server bundle from
getting blocked while the results are being relayed back to the
client, while increasing the robustness of the overall architecture.

5 APPLICATIONS

In this section, we describe two blockchain prototype applications
that demonstrate the utility of the CroCRPC framework. These apps
serve to mimic their non-blockchain centralized counterparts with
the added benefit of being implemented cross-chain in a distributed
fashion. Since all contracts are public, this reduces the requirements
of trust on and control of individual entities in the entire application.
With LayerZero’s architecture involving an Oracle and a Relayer,
it is also non-trivial to send tampered evidence of transactions via
cross-chain messages, thereby guaranteeing trustlessness.

5.1 Distributed Banking Application

This sample application simulates a cross-chain banking system
where the bank is located on a chain that might be different from
its customers. Instead of requiring all customers to be on the same
blockchain, the bank can implement the CroCRPC framework
which allows the clients to interact with the bank via remote proce-
dure calls. In this example, the bank implements the server bundle
to expose the APIs that the customers need for transactions. Cus-
tomers implement the client bundle and send every transaction as
an encoded cross-chain LayerZero message that is received and
parsed at the destination blockchain Bank smart contract. The bank-
ing server also runs a polling process that checks for potential API
responses and sends it back to the customer contract. This can be
used to provided metadata back to the customer such as their cur-
rent account balance, or simply an acknowledgement on whether
the transaction succeeded or failed. Fig 2 shows the interface be-
tween the customer and the bank and the different components
involved. Every additional customer will have implemented the
client bundle which has not been shown in the figure for brevity.
The remote procedures available to the customer Ul are as follows:

int balance = makeDeposit(int amount)
int balance = sendMoney(address receiver, int amount)

The int balance return value is saved in the customer smart contract
which can be observed asynchronously through the UL

Communication Flow. We simulate here a transaction where Cus-
tomer A on the Goerli testnet wants to send $100 to Customer
B on BSC testnet. Both A and B are customers to Bank which
is hosted on Fantom testnet. With the assumption that Customer
A has sufficient balance to fulfil the transaction, we will have the
following steps in the application.
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Figure 2: Distributed Banking Application Diagram

Step 1: A uses the transfer utility on his client UL

Step 2: The transfer utility calls the corresponding API inside
the customer smart contract that crafts and sends a LayerZero mes-
sage msg to the bank smart contract on the Fantom testnet. This
message contains information regarding the amount and the details
of the receiver (smart contract address of B).

Step 3: The LayerZero receiver on the bank smart contract gets
invoked with the receipt of message msg, parses it and calls the
appropriate banking API to handle the request. In this case, it will
call the sendMoney api with the amount and receiver information.
Step 4: sendMoney performs the transaction and updates the cus-
tomer balances and other metadata. It also adds the balance infor-
mation into the pending results pool.

Step 5: The server process polls repeatedly for new entries in
pending results. Once it finds new entries, it creates a LayerZero
message encoding the customer balances and metadata regarding
the location of the affected customer smart contracts. It then uses
the LayerZero sender API to transmit the messages back to the
customers A and B.

Step 6: The LayerZero receiver on A and B’s smart contracts
reads the incoming message and updates their local balances.

5.2 Decentralized Voting Application

Voting is a fundamental democratic activity. While people think
that paper ballots are generally the way to ensure everyone gets
to vote, it is cumbersome and inefficient. Online election methods
are extremely risky since any minor flaw in the application can
lead to massive vote rigging. That is where blockchain technology
comes into the picture to address these problems [18]. Since smart
contracts are always public and verifiable, the contents of a contract
and hence the results cannot be manipulated. Since it is distributed
on multiple hosts, it is also less prone to faults such as a single
server going down. It also ensures the anonymity of the voters,
while ensuring that each voter gets a proof that their vote has been



recorded. In this second example application, we have tried to ad-
dress these problems with a decentralized voting application based
on the CroCRPC framework. Fig 3 shows the interface between the
voter and the VoteTopic and the different components involved.
Every additional voter will have implemented the client bundle
which has not been shown in the figure for brevity.

Similar to the previous application, the VoteTopic is imple-
mented as a smart contract which implements the CroCRPC frame-
work’s server bundle. It also houses the server polling process to
check for responses that need to be sent back to the voters and sends
them using the LayerZero framework. Every voter, irrespective of
the blockchain deploys a smart contract that implements the client
bundle. A Javascript UI can be used to interface with the utility
functions available to the voter. The remote procedures available to
the client (i.e, voter) for this application are the following:

uint transactionID = castVote(address topic, uint16
chainlD, uint16 index)

Here, the voters provide the address of the contract (VoteTopic)
that they want to vote for, the chainID where it is deployed and
the index for the option they want to vote for. In turn, the remote
procedure returns a transactionID that can be used to uniquely
identify the vote and can be used later for tracking purposes.
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Figure 3: Decentralized Voting Application Diagram

Communication Flow. We simulate here a transaction where Voter
A on the Fantom testnet wants to vote for option C ina VoteTopic
having a question and four options (A to D) deployed on Goerli
testnet. We will have the following steps in the application.

Step 1: Voter A uses the castVote utility on his client UI with
index=2

Step 2: The castVote utility calls the corresponding API inside
the customer smart contract that crafts and sends a LayerZero mes-
sage msg to the VoteTopic smart contract on the Goerli testnet. This
message contains information regarding the index/option that the
client wants to vote for.

Step 3: The LayerZero receiver on the VoteTopic smart contract
gets invoked with the receipt of message msg, parses it and calls
the appropriate API to register the vote. In this case, it will call the
registerVote API with the vote option and voter information.
Step 4: The API first checks if the voter is casting a vote for the first
time, else it will ignore the vote as a duplicate. Once verified that
this is a new voter, it will record the vote and generate a transaction
ID which is a keccak256 [9] hash of the voter address.

Step 5: registerVote also updates the pending results pool
with information about the voter and the transactionID that needs
to be sent back.

Step 6: The server process polls repeatedly for new entries in
pending results. Once it finds new entries, it creates a LayerZero
message encoding the transactionID for the recorded vote. It then
uses the LayerZero sender API to transmit the messages back to
the voter A.

Step 7: The LayerZero receiver on A’s smart contract reads
the incoming message and updates their local mapping saving the
transactionID and the address of the vote topic.

5.3 Complexities and Potential Improvements

The sample applications described above demonstrates a communi-
cation flow that is very simple and works to illustrate the CroCRPC
interface. This, therefore overlooks certain complexities which
would need to be implemented for a fully functional application.
For example, we are assuming that the features provided by the
bank to its customers are known from the beginning and does
not change. If the bank decides to implement new features in the
future, we would require to create a new library smart contract. A
good design would be to link this smart contract via its address,
which is stored in the main banking contract as a modifiable data
member. This design prevents recreating a contract every time we
make a change to the underlying API libraries. If this implementa-
tion is not feasible, we would require every customer contract to
update the address of the bank contract whenever the bank deploys
a newer contract. We could have an updateBankAddress utility in
the customer UI or implement a versioning mechanism on the client
side to handle use cases where a certain API is not compatible with
newer deployments. Also, this design would work well for a small
customer pool. However, as the number of customers increase, we
might need to also increase the number of server process clones
that re-transmits results back to the customers. That brings with it
its own complications related to the access of critical code blocks
and synchronized sections for code paths racing to update the
same data member. Owing to Solidity limitations, this in itself re-
quires additional third-party libraries to properly implement and
manage. Similar arguments can be made for the Voting application.

5.4 Security Assumptions

The applications mentioned here in the paper are fairly simple and
are presented just to demonstrate various use cases of cross chain
remote procedure calls. Security implications have been ignored.
For example, in the banking application, we have not demonstrated
how to verify that it is the actual owner of the account who is
making a sendTransaction and not someone else. Similarly, in the
Decentralized Voting application, our proposed implementation



would not be able to identify if the actual user is casting the vote
or someone else. One way to overcome these security implications
is to have some sort of public key-private key cryptography
[3] built into these smart contracts. This way the messages that
are received from the client Ul implementations can be verified to
identify the actual owner. However, such cryptography primitives
are not predominantly widespread in blockchain applications and
is outside the current scope of the paper.

6 EVALUATION

In this section, we evaluate the performance of the CroCRPC frame-
work in terms of gas cost, latency and scalability. While these
metrics can vary widely and are not the most important design
decisions while choosing a network to act as the server and client,
the data below gives us a general idea of the ballpark ranges and
estimates. For the contracts to send cross chain messages, we need
to fund our source wallets with gas tokens, to be given as incen-
tive to the LayerZero Oracle and Relayer. The latency shows the
response time frame and scalability discusses the steps that can be
taken to make the servers able to handle increasing load.

6.1 Gas Fees

Remote procedure calls require two different gas fees to complete a
round-trip transaction. The first is needed when the remote method
name and arguments are encoded and sent to the server contract
and is paid by the client wallet. The second is required when the
server polling process encodes and sends back the response to
the client contract. This is paid by the server wallet. LayerZero
provides an implementation of the estimateFees function which
returns a dynamic fee based on the Oracle and Relayer prices for the
destination Chain ID. These values are dependent on the payload,
the originating smart contract and is provided in the native gas
token units for the corresponding chain. Fig 4 shows the variation
in gas fees in the native token for the same payload across different
destination chains, for some of the source testnet chains. Note that
these chains are chosen according to the availability of LayerZero
endpoints for those testnets. The graph shows gas cost for every
destination chain shown in the legend when a message is sent from
the source chains shown along the x-axis.

M Optimism-Goerli Mumbai W Fuiji Fantom-testnet M BSC-Testnet

550
4125

275

Gas Cost

1375

Optimism-Goerli Mumbai Fuji Fantom-testnet BSC-testnet
(x 1/100000) (x1/100) (x1/1000) x1/10) (x1/10000)

Source Chain

Figure 4: Typical Gas Fees for sending a cross chain message

From the figure, we can observe that it takes the highest amount
of gas fees to send a message to the Optimism-Goerli chain from
any of the other chains. BSC-Testnet comes second and is still
significantly higher than the other testnests under consideration.
Mumbai and Fantom are the cheapest when it comes to charging

Server Contract

| Latency Metrics (seconds) |

‘ ‘ Mumbai ‘ Fuji ‘ Fantom-testnet
| |

|

|

|
|
| - | 94 | 100 |
|
|

Mumbai
Client Contract ‘ Fuji ‘ 129 ‘ _ ‘ 114
‘ Fantom-testnet ‘ 117 ‘ 77 ‘ -

Table 1: Latency metrics for a complete remote procedure
call

gas fees with Fuji lying dead centre of our sample set. These con-
siderations might prove essential in deciding potential RPC hosts
when the same features are available on multiple chains as users
would typically like to reduce the amount of gas fees they pay for
invoking remote procedures. The gas fees from different source
chains have been scaled for the graph to be more meaningful.

6.2 Response Latency

Remote procedure calls are naturally subject to network latency
because messages are transmitted over the internet. The responses
received from the server contract can be treated like a callback
function and the main client process should not wait for the result.
In Table 1, we have noted the latency metrics in terms of seconds
that pass between the client contract invoking a remote procedure
until it receives a response back from the server. We show the results
for three of the chains which have the lowest gas cost among the
ones tested. We observe that the delay is somewhere between a little
over a minute to over two minutes. Latency can be considerably
higher for mainnet chains and during periods of high transaction
volume when nodes are busy processing many transactions. We can
reduce the latency by providing more gas tokens as fees but there
are other factors which determine the total delay. Some of these
include network congestion, network propagation delay, smart
contract execution time and ordering of message delivery.

6.3 Scalability

For server applications handling a large number of remote proce-
dure calls per second, the number of clients invoking the RPCs may
exceed the rate at which the server process is capable of sending
back responses. In such circumstances, it is fairly easy to modify the
server bundle to increase the number of polling processes handling
the response transmission. More polling processes naturally have a
higher transmission rate. If the order in which responses are sent
back to the respective clients does not matter, the non-blocking
LayerZero interface can be implemented to not wait for a suc-
cessful message transmission confirmation before sending out the
next. In such a system, however, re-entrancy guards should be
added in the server contract for methods that should only be called
serially. This prevents destructive state changes and ensures the
integrity of contract state variables.

7 CONCLUSION

This paper introduces the design and implementation of CroCRPC,
a cross chain RPC framework that allows developers to transfer



information and assets and invoke procedures across chains without
an intermediary. The framework provides server and client bundles
which make it easier for users to plug and play without requiring
extensive integration to interoperability hubs or converting code
to suit a specific protocol. The underlying LayerZero transport
layer allows native transactions between supported chains, while
newer chains can be added by just implementing additional libraries.
There is no initial or ongoing setup cost required to convert a server
application to act as an RPC host.

We believe CroCRPC will provide the underlying fiber for a
variety of cross-chain decentralized applications in the near future
allowing unhindered movement of information and assets in a safe
and secure manner across chains. Indie developers will easily be
able to port their applications from a centralized server based model
to blockchains and reap the benefits of decentralization, distributed
fault-tolerant robust systems, trustlessness and transparency.
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