
A Comprehensive Outlook for Analyzing and Enhancing the
Performance of Blockchain Platforms

Jeeta Ann Chacko
Technical University of Munich

chacko@in.tum.de

Ruben Mayer
University of Bayreuth

ruben.mayer@uni-bayreuth.de

Hans-Arno Jacobsen
University of Toronto

jacobsen@eecg.toronto.edu

ABSTRACT
As blockchain technology continues to evolve and expand across
various industries, ensuring optimal performance and scalability of
decentralized systems has become a critical concern. In this paper,
we provide a comprehensive outlook for analyzing and optimizing
blockchain performance across multiple layers of the blockchain
stack, including system, data, and application levels. We address
the performance challenges inherent in blockchain platforms, such
as network architecture complexities, consensus mechanism ineffi-
ciencies, and data management bottlenecks. Our study underscores
the importance of a holistic approach to performance optimiza-
tion and also examines real-time performance tuning and adaptive
optimization strategies. We offer practical insights into enhanc-
ing blockchain scalability, efficiency, and responsiveness. The dis-
cussions in this paper aim to equip developers, researchers, and
practitioners with the tools needed to optimize blockchain perfor-
mance effectively, ensuring these platforms can meet the evolving
demands of diverse applications.

VLDBWorkshop Reference Format:
Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. A
Comprehensive Outlook for Analyzing and Enhancing the Performance of
Blockchain Platforms. VLDB 2024 Workshop: Foundations and
Applications of Blockchain.

1 INTRODUCTION
The performance of blockchain platforms has become a critical area
of focus as these technologies evolve and are adopted across vari-
ous industries. Blockchains, by their decentralized nature, require
the careful coordination of multiple components, such as nodes,
validators, consensus mechanisms, smart contracts, ledgers, and
databases, to ensure secure and reliable transaction processing [24].
However, as transaction volumes increase and the complexity of
smart contracts grows, performance bottlenecks can emerge at
various layers of the blockchain stack, impacting throughput, la-
tency, and resource utilization [23]. Addressing these performance
challenges is essential to improve scalability and meet the high
demands of modern applications.

To simplify the discussion and better understand the perfor-
mance implications, we consider the complex blockchain stack to
be made up of three abstract layers: the system layer, the data
layer, and the application layer. At the system level, performance

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

is influenced by the underlying network architecture, consensus
mechanisms, and the configuration of nodes that validate and prop-
agate transactions. This layer is crucial for ensuring the integrity
and availability of the blockchain network but can suffer from issues
like network latency and consensus delays [36, 103]. At the data
level, the focus shifts to smart contracts and how information is
stored, retrieved, and managed across the blockchain. Efficient data
handling is vital to prevent bottlenecks caused by data redundancy,
storage limitations, and slow data access speeds, which can degrade
overall system performance [20, 21, 97]. Finally, the application
layer deals with how users interact with the blockchain through
decentralized applications. Performance at this layer is impacted by
the underlying business process model, transaction handling and
user interface responsiveness [109].

Given the complexity and interdependence of these layers, there
is a pressing need for a comprehensive approach to performance
analysis and optimization for blockchain platforms. Traditional
performance assessment methods often focus on isolated layers,
failing to provide a holistic view of the blockchain’s performance
landscape [23, 52, 62, 63, 74, 83, 93–95, 107]. This lack of integration
makes it challenging to identify and address root causes of ineffi-
ciencies that span multiple layers. To meet this need, we present a
comprehensive outlook on performance analysis and optimization
strategies for blockchain platforms. We explore various techniques
and methodologies for enhancing blockchain performance at the
system, data, and application levels. By providing a detailed ex-
amination of each layer, the paper aims to offer a nuanced under-
standing of where performance bottlenecks typically occur and
how they can be mitigated. For instance, at the system level, op-
timizing network configurations and consensus algorithms can
significantly reduce latency and improve throughput. At the data
level, employing advanced data management techniques like prun-
ing and compression can help manage storage costs and improve
data retrieval speeds. Meanwhile, at the application level, refining
transaction processing and optimizing the business process model
can enhance user experience and application responsiveness.

Moreover, we also discuss real-time performance optimization
approaches that dynamically adjust blockchain configurations based
on ongoing performance data. This data-driven approach enables
blockchain systems to adapt to changing workloads and conditions,
optimizing resource utilization and maintaining performance stan-
dards even under high transaction volumes or network congestion.
Techniques like dynamic parameter tuning, real-time data indexing,
and adaptive smart contract execution are discussed for keeping
blockchain platforms agile and responsive. Further, we also present
a case study of Hyperledger Fabric, where we discuss our previous
research and other related work that quantifies the benefits of a
comprehensive outlook on performance optimization.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


In summary, we offer a holistic perspective on the challenges
and strategies for optimizing blockchain performance across multi-
ple layers. We emphasize the need for a comprehensive approach
that integrates performance analysis and optimization across the
system, data, and application layers to achieve better scalability,
efficiency, and reliability. The insights and methodologies presented
here are aimed at helping blockchain developers, researchers, and
practitioners better understand the intricacies of blockchain per-
formance and how to effectively enhance it to meet the growing
demands of various applications.

2 BACKGROUND
The rise of blockchain technology has introduced a variety of plat-
forms, each tailored to meet specific industry needs while also
addressing the challenges of decentralization, scalability, and se-
curity. As these platforms mature, understanding their underlying
architectures, components, and transaction flow becomes essential
for optimizing performance across different use cases. This section
provides a background on seven prominent blockchain platforms —
Hyperledger Fabric, Quorum, Multichain, Corda, Solana, Algorand,
and Avalanche — each offering unique features and facing distinct
performance challenges.

2.1 Hyperledger Fabric
Hyperledger Fabric [45] is a permissioned blockchain framework
designed for enterprise use, offering a modular architecture that
provides high flexibility and scalability. Its architecture consists
of key components such as peers, orderers, endorsers, and clients.
Peers are the nodes that maintain the ledger and execute smart
contracts (called chaincode in Fabric), while orderers are responsi-
ble for ordering transactions into a block and delivering them to
peers in the correct order. Endorsers are specific peers that simulate
and endorse transactions before they are added to a block. The
transaction flow in Hyperledger Fabric starts with a client submit-
ting a transaction proposal to endorsing peers, which simulate the
transaction without updating the ledger and provide an endorse-
ment signature. Once the required endorsements are collected, the
transaction is sent to the ordering service, which batches transac-
tions into blocks and delivers them to committing peers for final
validation and ledger update.

2.2 Quorum
Quorum [89] is an enterprise-focused version of Ethereum de-
signed to provide a permissioned environment for financial in-
stitutions. It features a modified Ethereum architecture to enhance
privacy, performance, and throughput. The key components of
Quorum include the Quorum Node (a modified Geth client), the
Tessera/Constellation privacy manager for handling private trans-
actions, and Raft or Istanbul BFT consensus mechanisms. The trans-
action flow in Quorum begins when a transaction is submitted by a
client to a Quorum node. If the transaction is private, it is encrypted
and sent to the Tessera nodes for secure handling. The transaction
is then broadcast to the network, and based on the consensus mech-
anism (Raft or IBFT), the nodes agree on the transaction order. Once

consensus is reached, the transaction is executed and the state is up-
dated across the network, ensuring both privacy and transparency
as needed.

2.3 Multichain
Multichain [81] is a permissioned blockchain platform that offers
a simple and flexible architecture designed for rapid deployment
of private blockchains. Its architecture is built around a peer-to-
peer network of nodes, each of which maintains its own copy of
the blockchain. Key components include nodes, streams (for data
management), and permissions that control who can participate
and perform specific actions in the network. The transaction flow
in Multichain starts when a node creates a transaction and signs
it with its private key. The transaction is then propagated to other
nodes in the network for validation. If the transaction complies with
the network’s rules and permissions, it is added to the mempool.
The nodes then work to solve a proof-of-work or follow a round-
robin approach to produce the next block, which is then added to
the blockchain and broadcasted to all nodes.

2.4 Corda
Corda [32] is a distributed ledger platform designed primarily for
business and financial applications that require privacy and scala-
bility. Unlike traditional blockchains, Corda does not use a global
broadcast mechanism for transactions; instead, transactions are
shared only with parties involved, enhancing privacy. Its architec-
ture consists of nodes, notaries, and a unique contract state model.
The key components include the Corda node, the notary service
for preventing double-spending, and flows (automated workflows
for transaction management). The transaction flow in Corda starts
when two or more parties negotiate and agree on a transaction. The
transaction is then digitally signed and sent to a notary service for
validation to ensure no double-spending occurs. Once validated,
the transaction is recorded in the respective parties’ ledgers with-
out broadcasting to the entire network, maintaining privacy and
efficiency.

2.5 Solana
Solana [100, 116] is a high-performance blockchain platform de-
signed for decentralized applications and crypto-assets, emphasiz-
ing scalability and low transaction costs. Its architecture is built
around a single-layer blockchain leveraging a unique consensus
algorithm called Proof of History (PoH), which provides a historical
record to prove that events have occurred in a specific sequence.
Key components include validators, which verify transactions and
produce blocks, and a series of cryptographic timestamps that en-
able fast ordering of transactions. The transaction flow in Solana
begins when a client submits a transaction to a validator, which
adds a timestamp and propagates it to other validators. Validators
verify transactions against the current state, and once consensus
is achieved, transactions are bundled into blocks and added to the
blockchain, all while maintaining high throughput and minimal
latency.

2



2.6 Algorand
Algorand [2] is a pure proof-of-stake (PPoS) blockchain platform
focused on achieving high scalability, security, and decentralization
without compromising performance. Its architecture includes key
components such as nodes (participation nodes and relay nodes),
consensus protocol participants, and the Algorand Virtual Machine
(AVM) for smart contract execution. The transaction flow in Algo-
rand starts when a user submits a transaction to a participation
node, which propagates it to relay nodes for broader network distri-
bution. The consensusmechanism uses a verifiable random function
(VRF) to randomly select a small committee of participation nodes
to propose and vote on the next block. After reaching consensus,
the block is added to the blockchain, and all participating nodes
update their state accordingly, ensuring quick finality and high
throughput.

2.7 Avalanche
Avalanche [13] is a highly scalable and flexible blockchain platform
designed to support custom blockchain networks and decentral-
ized applications. Its architecture consists of multiple chains, each
optimized for different use cases: the X-Chain (exchange chain),
C-Chain (contract chain), and P-Chain (platform chain). Key com-
ponents include validators that participate in the consensus process,
subnets (independent networks within Avalanche), and the Snow-
ball consensus protocol that enables quick and probabilistic finality.
The transaction flow in Avalanche starts with a transaction sub-
mitted to a validator on a specific chain. The validator propagates
the transaction to other validators in the subnet, and through re-
peated sub-sampled voting rounds, consensus is reached. Once
consensus is achieved, the transaction is confirmed and added to
the respective blockchain, allowing for high transaction throughput
and scalability.

3 PERFORMANCE ISSUES
Blockchain platforms face a variety of performance challenges
that stem from their underlying architectures, consensus mecha-
nisms, and data management strategies. This section delves into
the specific performance issues encountered at the system, data,
and application levels in different blockchain platforms. By identi-
fying these bottlenecks, we can better understand the root causes
of inefficiencies and develop targeted optimization strategies.

3.1 System Level
Performance issues at the system and network levels are critical
challenges faced by different blockchain platforms, impacting their
scalability, efficiency, and overall effectiveness. These issues stem
from various factors, such as network latency, block propagation
delays, resource allocation, and the communicational and com-
putational demands of consensus mechanisms. Each blockchain
platform has unique architectural features and operational require-
ments that contribute to its specific performance challenges.

In Hyperledger Fabric, one of the key performance issues is the
resource-intensive nature of its architecture, particularly as trans-
action volumes increase. As more transactions are processed, the
demands on system resources such as CPU, memory, and storage
grow, leading to potential bottlenecks. These bottlenecks can affect

the efficiency of validating peers and orderers, which are crucial for
maintaining consensus and transaction ordering [46, 61]. Another
significant issue is the network latency that arises from the commu-
nication overhead between different components (e.g., endorsers,
orderers, and committers), which can slow down the transaction
processing time and overall system throughput [54, 107].

Corda also faces several performance challenges at the system
and network levels. One primary issue is the bottleneck associated
with transaction notarization, which is a critical step in ensuring
the validity and uniqueness of transactions. As transaction volumes
increase, a single notary or a limited set of notaries can become
a point of congestion, slowing down transaction finality [33, 64].
Additionally, the complexity of Corda’s flows—automated processes
that manage communication and coordination between nodes—can
lead to increased network communication round trips, which fur-
ther exacerbates latency issues [78]. Another significant challenge
in Corda is the length of the state history; as all state changes need
to be replicated to counterparties for verification, maintaining a
lengthy state history can impact transaction times and system per-
formance. This replication requirement adds overhead, especially
in high-volume environments where numerous state changes occur
frequently [36].

Platforms like Algorand, Solana, and Avalanche face perfor-
mance challenges due to their distinct consensus mechanisms and
architectural designs. In Algorand, block propagation delay and net-
work latency are significant issues. The speed at which blocks are
disseminated across the network and synchronized among nodes
can impact transaction throughput, causing delays in confirming
transactions [44, 65]. Solana, on the other hand, is prone to cen-
tralization risks due to the high computing resources required to
become a validator, which can limit network participation and in-
crease the chances of network outages and downtime [86, 103]. Ad-
ditionally, Solana faces throughput challenges due to the high rate
of transaction submissions relative to its capacity to process them,
leading to network congestion and failed transactions [18, 104].
Avalanche also experiences throughput issues, which can be at-
tributed to the time interval between consecutive blocks [53]. This
block period limits the speed at which new transactions are added
to the ledger, thereby constraining overall network throughput
regardless of the available computational power or network band-
width.

3.2 Data Level
Performance issues at the data level in blockchain platforms are
primarily driven by limitations in data management, data storage,
and smart contract execution, all of which can significantly impact
the overall efficiency and scalability of the system. One major bot-
tleneck is associated with the way smart contracts are processed
and executed on blockchain networks. Smart contracts can intro-
duce significant delays in transaction processing due to their inher-
ent complexity and the need for extensive computation [91]. Each
smart contract execution requires multiple steps of verification
and state updates across the network, leading to increased latency.
For example, smart contracts that perform multiple read and write
operations can slow down the entire network, particularly when
the contracts are not optimized for minimal data handling [97].

3



This inefficiency is exacerbated in public blockchains, where all
nodes need to validate each transaction, further contributing to the
slowdown.

Data storage presents another significant performance challenge
across different blockchain platforms. Blockchains are facing a
growing storage problem due to the ever-increasing amount of
data generated by transactions. Every transaction must be stored
permanently across all nodes, leading to exponential growth in data
storage requirements. The cumulative size of the blockchain can be-
come a bottleneck as it increases the time needed for nodes to sync
and validate new transactions [20, 73]. Additionally, data storage
inefficiencies can lead to increased operational costs for running
nodes, as they require more disk space and higher storage capabili-
ties. This can significantly affect the blockchain’s performance and
scalability [59, 112].

The challenges in data management and data retrieval further
compound the performance issues at the data level. Traditional
methods of querying and retrieving blockchain data are not de-
signed for efficiency, often resulting in slow and cumbersome op-
erations. The lack of structured data formats and standardized
APIs means that data extraction is typically resource-intensive and
slow, which can hinder real-time analytics and decision-making
processes. For examples, Fabric’s reliance on state databases like
CouchDB can lead to performance degradation due to inefficient
querying and state management when handling large volumes of
data [23]. In platforms that rely heavily on historical data analysis,
such as financial services and supply chain management, the ineffi-
ciencies in data retrieval can become a significant bottleneck [73].
Moreover, the lack of data organization and efficient indexing mech-
anisms in blockchains results in slow query performance, which
directly impacts applications that require rapid data access and pro-
cessing. As the data stored on blockchains continues to grow, these
issues will likely worsen, underscoring the need for more robust
data management strategies to maintain performance [20, 21, 115].

3.3 Application Level
Performance issues at the application level for different blockchain
platforms are primarily caused by bottlenecks in components that
handle user interactions and transaction processing. One bottleneck
is the API gateway, which serves as the initial entry point for incom-
ing requests [19, 109]. The API gateway is responsible for various
functions, such as routing, request validation, authentication, and
authorization. These functions can introduce processing overhead,
especially when handling a high volume of requests, leading to
increased response times [39]. For instance, in a blockchain-based
payment system, frequent transactions and queries from multiple
users can overwhelm the API gateway, causing delays in process-
ing and response. Additionally, scalability limitations of the API
gateway can further exacerbate these issues during peak load times,
resulting in a degraded user experience due to increased latency
and slower transaction throughput [108].

Another performance issue arises from the web server and trans-
action queue components, which manage the flow of transactions to
the blockchain nodes. The web server is responsible for retrieving
information and generating responses. If the web server is not opti-
mized or lacks sufficient computational resources like CPU,memory,

or disk I/O, it can significantly slow down the handling of con-
current requests, leading to increased response times and reduced
throughput. Moreover, the transaction queue can become congested
when overloaded with a high volume of transactions [118]. With-
out efficient concurrency management, this congestion can lead to
synchronization delays, where transactions are delayed in process-
ing and dispatching to the blockchain node. Such bottlenecks are
particularly problematic for applications requiring high-frequency
transactions, such as decentralized exchanges or real-time bidding
platforms, where delays can significantly impact performance and
user satisfaction [108, 109].

In addition to these component-level bottlenecks, issues with
business process models also affect the performance of blockchain
applications. In enterprise scenarios, blockchain-based applications
often need to interact with complex business processes that involve
multiple steps and dependencies. For example, in supply chain
management systems built on blockchain, each transaction may
represent a step in a complex process, such as inventory updates,
shipment tracking, and payment settlements [24, 43]. If these busi-
ness process models are not optimized for performance, they can
lead to increased latency and reduced throughput. Overly complex
process models may require multiple blockchain interactions for
each step, increasing the load on the network and slowing down
the overall process. Moreover, synchronization and consensus re-
quirements for each step add additional latency. Simplifying and
optimizing these business process models can help reduce the num-
ber of necessary blockchain interactions and improve the overall
performance of the application, ensuring smoother and more effi-
cient user experiences [88].

4 PERFORMANCE OPTIMIZATION
Optimizing the performance of blockchain platforms requires a
multifaceted approach that addresses the entire blockchain stack.
In this section, we discuss various possible strategies that can be
applied at each abstract layer to optimize system configurations,
data management, and application-specific processes.

4.1 System Level
Different blockchain platforms have distinct architectures and com-
ponents that influence their performance characteristics. Therefore,
performance optimization at the system level requires a tailored ap-
proach that includes strategically configuring system components
and fine-tuning parameters relevant to each platform’s unique re-
quirements to enhance overall efficiency and throughput [48]. This
section explores the strategies and techniques for improving perfor-
mance across diverse blockchain technologies, highlighting specific
examples and best practices for each.

In Hyperledger Fabric, performance can be optimized by care-
fully balancing the distribution and count of system components,
such as validating peers, endorsers, orderers, and clients. For in-
stance, increasing the number of endorsing peers may improve en-
dorsement throughput, but it requires careful load balancing across
peers to prevent bottlenecks [24, 27, 58]. In this regard, choosing
the right endorsement policy aids in preventing endorsing peer
bottlenecks [23, 107]. Network latency can be reduced by strategi-
cally placing peers and orderers to minimize communication delays.

4



Additionally, optimizing Fabric’s state database by choosing be-
tween LevelDB and CouchDB based on query requirements can
significantly impact performance [23, 107]. It is also beneficial to
tune various system configuration settings such as block size, batch
timeout, and database parameters to balance throughput and la-
tency based on the application’s specific needs, ensuring optimal
resource utilization and performance [23, 87]. Over 50 parameters
have been identified in Fabric that have a significant impact on
performance [71].

We can make similar observations regarding the effect of node
distribution and parameter tuning on performance in other blockchain
platforms. In Quorum, for example, full nodes with a privacy man-
ager can handle process-intensive tasks, but the optimal perfor-
mance might be achieved by deploying a mix of light nodes for less
intensive tasks [51]. Furthermore, configuring boot nodes versus
static nodes impacts the peer discovery strategy, which influences
network latency and transaction speed [28, 29]. Adjusting the con-
sensus protocol to Raft or Clique based on the desired fault tolerance
also plays a critical role in optimizing system performance [30].

For Corda, efficient handling of transaction notarization is neces-
sary, as notary nodes can become bottlenecks under heavy load [33].
By optimizing notary configurations and deploying multiple notary
clusters, the overall throughput can be significantly enhanced [34].
Additionally, there are multiple configuration parameters that can
be fine-tuned to reduce unnecessary delays and improve transaction
processing efficiency. This includes parameters related to cache,
flow retries, timeout, connection pools, batch size, Java Virtual Ma-
chine (JVM), and Artemis message broker [34–36]. For example,
to optimize throughput, it is recommended to use asynchronous
flows wherever possible, reducing the blocking time and allowing
the system to handle multiple transactions concurrently [31].

Multichain’s performance can be significantly improved by fine-
tuning its mining parameters, such as enabling skip proof-of-work
checks and adjusting mining diversity [79]. Multichain also in-
troduces the concept of data streams, where nodes subscribe to
specific streams to ensure faster and more efficient information
retrieval [80]. Configuring these streams appropriately allows for
quicker data access and enhanced performance across the network.

Algorand also offers opportunities for performance optimization
through parameter tuning and system configuration adjustments.
Algorand’s recent upgrades demonstrate a five-time increase in
performance achieved by increasing the block size and reducing
average round times [4]. Algorand includes numerous other node
configuration and consensus protocol settings, though there is a
lack of documentation or experimental evidence on how to best
tune these parameters [1, 3, 49]. Algorand has implemented (or
plans to implement) various other system optimizations such as
opportunistic compression, congestion management, and identity
checks to prevent duplicate peer connections [6, 65]. These strate-
gies, which can also be useful for other blockchain platforms, reduce
round times and improve overall network efficiency, supporting
higher transaction volumes with reduced latency.

Solana’s performance can be improved with block optimiza-
tion and the strategic configuration of validator nodes [72, 98]. By
limiting ledger size and optimizing transaction processing at the
RPC node level, Solana can achieve better performance [101, 102].
Avalanche’s performance can be enhanced by tuning parameters

like quorum size, which impacts security and liveness, and by opti-
mizing node setup for Avalanche subnets [10, 12, 18]. This includes
optimizing hardware resources, such as CPU and memory alloca-
tion, configuring nodes for optimal network bandwidth usage, and
tuning the AvalancheGo settings for maximum throughput and
low latency [8, 11, 14]. Proper node setup and subnet management
can ensure that Avalanche handles high transaction volumes with
efficient parallel processing capabilities [15].

4.2 Data Level
Performance optimization at the data level for different blockchain
platforms focuses on improving efficiency through effective data
management and smart contract optimization. In Hyperledger Fab-
ric, several techniques can be applied to enhance data-level per-
formance. Transaction dependency conflicts are a key reason for
transaction failures in Fabric [23]. Therefore, one optimization
approach is using delta writes, where transactions that perform
increment or decrement operations are converted into write-only
transactions to unique delta keys, reducing transaction dependency
and failure rates [24]. This technique minimizes the need to read
a key before every write, thus improving transaction throughput.
Another method is smart contract partitioning, which involves
splitting a smart contract into multiple contracts that access sep-
arate world states. This reduces transaction conflicts by ensuring
that different contracts handle different parts of the data, akin to
partitioning tables in a relational database. Additionally, altering
the data model can also mitigate hotkey conflicts. For instance,
in scenarios where a single key is accessed frequently, changing
the primary key can distribute the data load more evenly across
transactions, significantly improving performance.

Effective data storage is a key optimization strategy at the data
level. For example, Algorand’s planned implementation of the Al-
gorand Vault addresses the challenge of local storage by using
transaction expiration and sharding techniques, which minimize
the need for nodes to check all blocks continuously [7, 70]. This
approach reduces the storage overhead on local nodes, facilitating
faster bootstrapping and synchronization of new nodes joining
the network. Additionally, smart contract optimization in Algo-
rand involves practices such as minimizing the complexity of smart
contracts, optimizing logic to reduce computational requirements,
and efficiently managing stateful contract interactions [5, 106]. For
example, developers can improve the throughput of smart con-
tracts by employing strategies like reducing the size of stateful
data and avoiding expensive operations in the contract code [5, 17].
These optimizations can help Algorand maintain high transaction
throughput and low latency, particularly in environments with high
volumes of smart contract interactions.

In Solana, data-level performance optimization focuses on max-
imizing the efficiency of compute usage to enhance overall net-
work performance. The Solana network allows developers to op-
timize their programs by carefully managing the compute budget
assigned to each transaction [99]. This involves writing programs
that are as lightweight as possible, minimizing the number of com-
pute units consumed by each operation. Key techniques include
avoiding unnecessary loops, using efficient data structures, and

5



reducing function calls, which can significantly cut down on com-
pute time [37, 99]. By optimizing compute usage and ensuring that
programs run within their allocated compute limits, Solana can
maintain high throughput and low latency, enabling the network
to efficiently handle a large volume of transactions.

Smart contract optimization techniques in Solidity, commonly
used in Ethereum-based platforms, are also applicable across vari-
ous blockchain networks to reduce gas consumption and enhance
execution speed. Key strategies include minimizing storage opera-
tions, which are costly in terms of gas fees, and leveraging events
instead of state variables to reduce state changes [22, 105, 113].
Developers can also use fixed-size data types and avoid dynamic
array resizing to save gas. Moreover, careful contract design to
prevent redundant calculations and consolidate repetitive logic into
single operations can significantly reduce the computational load.
By focusing on these aspects, blockchain platforms using Solid-
ity for smart contracts can achieve lower transaction costs and
faster execution times, contributing to more efficient and scalable
decentralized applications.

Further, blockchain storage optimization techniques such as
replication-based, redaction-based, and content-based optimiza-
tions can enhance datamanagement efficiency [41, 57, 117]. Replication-
based optimizations reduce data duplication across nodes, which is
particularly useful for minimizing storage overhead in scenarios
where multiple copies of the same data are not necessary. Redaction-
based optimizations allow the modification or removal of data al-
ready committed to the ledger, which could help manage storage
requirements and improve efficiency by discarding irrelevant or
outdated information. Content-based optimizations involve com-
pressing data before or after committing it to the ledger, which can
be effective in reducing the size of the stored data, thereby saving
storage space and improving access times.

4.3 Application Level
Performance optimization at the application level for blockchain
platforms can be significantly enhanced using various strategies
that focus on refining the process model and managing transac-
tions effectively. One interesting approach is process mining, which
involves analyzing data from event logs to understand actual trans-
action workflows and identify inefficiencies or deviations from ex-
pected behaviors. This insight allows organizations to refine their
process models, remove bottlenecks, and reduce latency, thereby
improving overall blockchain performance [88, 110].

Using process mining results, various strategies can be applied
to optimize transaction execution [24]. Activity reordering involves
analyzing the dependencies and data correlations of transactions to
find reorderable pairs that can be executed in a different sequence
to reduce conflicts and enhance parallel processing. Meanwhile,
process model pruning removes unnecessary or redundant steps
from the workflow, focusing only on essential transactions that con-
tribute to the process’s value. This reduces computational overhead
and enhances application efficiency by eliminating superfluous ac-
tivities. There are also techniques that enable the translation of
Business Process Model and Notation (BPMN) models into Solidity
smart contracts via minimized Petri nets. This method allows for

the identification and removal of non-essential tasks and transi-
tions, effectively pruning the process model to its most efficient
form [47].

Transaction rate control and batching are techniques aimed at
managing transaction submission to optimize network performance.
Rate control involves monitoring transaction rates over time and
adjusting the flow of transactions during peak loads to prevent con-
gestion and reduce failures. Configurable thresholds can help main-
tain a balance between throughput and network stability. Batching
groups similar transactions into a single batch to minimize process-
ing overhead and improve throughput. For repetitive tasks, such
as mass token transfers, batching can significantly reduce the total
number of transactions, making the process more cost-effective
and time-efficient [24, 108, 111].

To further enhance performance, transaction monitoring, early
cancellation, and notification systems play a crucial role. Trans-
action monitoring to track transaction statuses in real-time can
be done and prompt actions can be taken for pending transac-
tions. Early cancellation and acceleration techniques can be applied
for expediting or canceling transactions that are delayed or no
longer necessary, reducing network congestion. Additionally, im-
plementing notification systems ensures that users and applications
receive real-time updates on transaction completions, preventing
duplicate submissions and maintaining a smooth transaction flow.
These strategies collectively improve the efficiency and reliability
of blockchain applications [24, 56, 108].

5 REAL-TIME OPTIMIZATION
Blockchains often operate under dynamically varying workloads,
network congestion, and node capabilities, all of which can signif-
icantly impact performance metrics such as throughput, latency,
and energy consumption. Therefore, real-time optimization is es-
sential for blockchains because it enables these systems to respond
dynamically to the unpredictable and fluctuating conditions that
characterize decentralized networks. By employing real-time opti-
mization, blockchains can adaptively modify system configurations,
data management settings, and application processes to maintain
optimal performance.

5.1 System Level
At the system level, real-time optimizations can focus on adapting
the configuration of network components and consensus proto-
cols to manage workload efficiently and reduce latency. Dynamic
architecture adaptations based on workload variations have been
discussed in the literature with significant improvements to perfor-
mance [114]. Further, dynamically adjusting the number of val-
idators or modifying the consensus mechanism based on real-
time transaction throughput can help balance security and per-
formance. Adaptive leader selection [119] and validator size selec-
tion [69] strategies found in the literature could be incorporated
into blockchains. Further, blockchains can handle variable loads
more effectively, minimizing delays and improving overall network
responsiveness by continuously tuning system parameters to match
current network conditions [25, 71, 92].

6



5.2 Data Level
At the data level, real-time optimization strategies should focus
on adapting data storage, retrieval, and processing capabilities to
manage the growing volumes of blockchain data more efficiently.
Extensive research on dynamic resource allocation, configuration
parameter tuning, query optimization, partitioning, storage layout
configuration, and indexes has been conducted by the database
community, which can be redesigned to fit the blockchain architec-
ture [26, 38, 55, 60, 66–68, 75–77, 84, 85, 120, 122]. In a blockchain
scenario, this would mean using adaptive data management tech-
niques such as pruning unnecessary data, compressing stored data,
and dynamically allocating storage resources based on usage pat-
terns and data access frequencies. By optimizing data handling
strategies in real-time, blockchain platforms can reduce storage
costs, improve data access speeds, and ensure that the system re-
mains responsive even as the amount of data increases [42, 90, 121].
These techniques are particularly valuable in applications that rely
on timely data processing and high transaction throughput, such
as financial services.

5.3 Application Level
At the application level, real-time optimization can focus on adjust-
ing transaction handling and application logic to improve the perfor-
mance of decentralized applications. This includes dynamically tun-
ing transaction batching, prioritizing critical transactions, and opti-
mizing the execution paths of application workflows to minimize
processing delays [50, 96]. By leveraging real-time performance
metrics, blockchain platforms can detect bottlenecks in transaction
processing or application execution and make necessary adjust-
ments to maintain high throughput and low latency [24, 108, 111].
This dynamic approach to application-level optimization ensures
that decentralized applications can operate smoothly and efficiently,
providing a responsive user experience even under varying network
loads and conditions.

6 CASE STUDY: HYPERLEDGER FABRIC
In this section, we present a study of Hyperledger Fabric based on
our previous research and related work that quantifies the need and
effectiveness of a comprehensive outlook to performance optimiza-
tion in blockchains. Our research consisted of three pivotal phases.
We initially focused on benchmarking Hyperledger Fabric to iden-
tify the key factors contributing to performance bottlenecks [23].
At the system level, we identified various factors that significantly
impacted the performance, such as the distribution of components
and tuning of configuration parameters. For example, we observed
up to 60% improvement in success throughput when the block size
parameter was tuned optimally. At the data level, we analyzed
the effect of different database types on performance and further
measured the latency of various smart contract function calls to
understand the root causes for the inefficient database type. At the
application level, we conducted extensive experiments with multi-
ple realistic workloads to understand their impact on performance.
The findings from our experiments allowed us to identify various
optimization strategies that can improve performance across the

system, data, and application layers of the Fabric blockchain archi-
tecture. Many related works also conducted benchmarking studies
on various aspects of the Fabric blockchain [9, 16, 40, 87, 107].

In the next phase of our research, we shifted our attention to
automating the generation of these optimization strategies tailored
to specific workload conditions [24]. We analyzed the data in the
blockchain ledger, which is representative of the workload, to derive
suitable optimization strategies at each layer of the blockchain stack.
We developed a tool called BlockOptR that performs data analysis
on the ledger and automatically generates ideal optimization recom-
mendations for the current workload. When these strategies were
implemented manually, they led to a significant improvement in
performance (an average of 40% improvement in latency). Further,
various optimized extensions of Fabric that tackle performance
bottlenecks at different layers of the blockchain stack can be found
in the literature [23, 23, 52, 62, 82, 93, 95].

The final phase of our study aimed at automating the implemen-
tation of these optimization strategies and dynamically adjusting
them in response to workload variations [25]. We explored the po-
tential of creating a self-driving blockchain system that continually
enhances performance. We set up three demonstrative autonomous
systems, each focusing on a different blockchain layer. Initial results
show promising improvements in performance with up to 11% im-
provement in success throughput. This is a significant first step to-
wards implementing a fully autonomous system in the future. Many
related works also explore the possibility of an autonomous Fabric
or Fabric-like blockchain [71, 114]. Our three-phase research, along
with the related works that focus on the performance of Hyper-
ledger Fabric, highlights the importance and quantifies the benefit
of holistic approaches to performance optimization in blockchains.

7 CONCLUSION
In conclusion, this paper presents a comprehensive outlook on the
performance analysis and optimization of blockchain platforms,
emphasizing the need for a holistic approach that spans across
system, data, and application layers. We have identified various
performance bottlenecks inherent in different blockchain archi-
tectures and discussed targeted optimization strategies to address
these challenges effectively. Our study highlights the significance of
real-time optimization techniques that dynamically adapt to vary-
ing workloads and network conditions, ensuring that blockchain
systems remain scalable, efficient, and reliable under diverse opera-
tional scenarios. Furthermore, the case study on Hyperledger Fabric
exemplifies the practical benefits of such an integrated approach,
demonstrating significant improvements in throughput and latency
when optimization strategies are applied across all layers. This
reinforces the value of adopting a comprehensive framework for
blockchain performance enhancement, which not only addresses
immediate performance issues but also prepares these platforms
to meet the evolving demands of future applications. The insights
from this paper serve as a resource for future researchers, offer-
ing a foundational understanding of performance dynamics and
optimization techniques in blockchain systems. By building on our
discussions, future work can further explore new dimensions of
optimization and contribute to the advancement of more robust
and adaptable blockchain technologies.

7



REFERENCES
[1] Algorand consensus protocols 2024. https://github.com/onplanetnowhere/

AlgorandConsensusProtocolMD?tab=readme-ov-file. [Online; accessed 20-
August-2024].

[2] algorand documentation 2024. https://developer.algorand.org/docs/. [Online;
accessed 20-August-2024].

[3] Algorand node configurations 2024. https://developer.algorand.org/docs/run-a-
node/reference/config/. [Online; accessed 20-August-2024].

[4] Algorand performance boost 2024. https://developer.algorand.org/articles/
algorand-boosts-performance-5x-in-latest-upgrade/. [Online; accessed 20-
August-2024].

[5] Algorand smart contracts 2024. https://developer.algorand.org/docs/get-details/
dapps/smart-contracts/guidelines/. [Online; accessed 20-August-2024].

[6] Algorand transaction speed 2024. https://developer.algorand.org/articles/
reaching-new-transaction-speeds-on-algorand/. [Online; accessed 20-August-
2024].

[7] Algorand Vault 2024. https://algorandtechnologies.com/news/algorands-vault-
fast-bootstrapping-for-the-algorand-cryptocurrency. [Online; accessed 20-
August-2024].

[8] Ignacio Amores-Sesar, Christian Cachin, and Philipp Schneider. 2024. An
Analysis of Avalanche Consensus. In Structural Information and Communication
Complexity, Yuval Emek (Ed.). Springer Nature Switzerland, Cham, 27–44.

[9] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gen-
nady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy,
Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti,
Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason
Yellick. 2018. Hyperledger Fabric: A Distributed Operating System for Per-
missioned Blockchains. In Proceedings of the Thirteenth EuroSys Conference
(Porto, Portugal) (EuroSys ’18). ACM, New York, NY, USA, Article 30, 15 pages.
https://doi.org/10.1145/3190508.3190538

[10] Avalanche best practices 2024. https://medium.com/@subnetsdeployy/
optimizing-performance-best-practices-for-avalanche-subnets-node-setup-
a0f7a5a46b17. [Online; accessed 20-August-2024].

[11] Avalanche chain configurations 2024. https://docs.avax.network/nodes/chain-
configs/overview. [Online; accessed 20-August-2024].

[12] Avalanche Consensus 2024. https://docs.avax.network/learn/avalanche-
consensus. [Online; accessed 20-August-2024].

[13] Avalanche documentation 2024. https://docs.avax.network/. [Online; accessed
20-August-2024].

[14] Avalanche node configurations 2024. https://docs.avax.network/nodes/
configure/configs-flags. [Online; accessed 20-August-2024].

[15] Avalanche subnet configurations 2024. https://docs.avax.network/nodes/
configure/subnet-configs. [Online; accessed 20-August-2024].

[16] A. Baliga, N. Solanki, S. Verekar, A. Pednekar, P. Kamat, and S. Chatterjee. 2018.
Performance Characterization of Hyperledger Fabric. In 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT). 65–74. https://doi.org/10.1109/
CVCBT.2018.00013

[17] Massimo Bartoletti, Andrea Bracciali, Cristian Lepore, Alceste Scalas, and
Roberto Zunino. 2021. A Formal Model of Algorand Smart Contracts. In Finan-
cial Cryptography and Data Security, Nikita Borisov and Claudia Diaz (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 93–114.

[18] Álvaro Bayona Bultó. 2023. A Comprehensive Evaluation of Ethereum, Solana,
and Avalanche in Addressing the Blockchain Trilemma. (2023).

[19] Blockchain API 2024. https://blog.axway.com/learning-center/digital-security/
risk-management/blockchain-api. [Online; accessed 20-August-2024].

[20] Blockchain data warehousing 2024. https://bitquery.io/blog/blockchain-data-
warehousing. [Online; accessed 20-August-2024].

[21] Blockchain Storage problem 2024. https://www.halborn.com/blog/post/
blockchains-storage-problem-is-growing-are-there-any-solutions. [Online;
accessed 20-August-2024].

[22] Tamara Brandstätter, Stefan Schulte, Jürgen Cito, and Michael Borkowski. 2020.
Characterizing Efficiency Optimizations in Solidity Smart Contracts. In 2020
IEEE International Conference on Blockchain (Blockchain). 281–290. https://doi.
org/10.1109/Blockchain50366.2020.00042

[23] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why Do My
Blockchain Transactions Fail? A Study of Hyperledger Fabric. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD/PODS ’21). Association for Computing Machinery, New York, NY,
USA, 221–234. https://doi.org/10.1145/3448016.3452823

[24] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2023. How To
Optimize My Blockchain? A Multi-Level Recommendation Approach. Proc.
ACM Manag. Data 1, 1, Article 24 (may 2023), 27 pages. https://doi.org/10.1145/
3588704

[25] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2024.
Should my Blockchain Learn to Drive? A Study of Hyperledger Fabric.
arXiv:2406.06318 [cs.DC] https://arxiv.org/abs/2406.06318

[26] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database Systems:
A Decade of Progress. In Proceedings of the 33rd International Conference on
Very Large Data Bases (Vienna, Austria) (VLDB ’07). VLDB Endowment, 3–14.

[27] Grant Chung, Luc Desrosiers, Manav Gupta, Andrew Sutton, Kaushik
Venkatadri, Ontak Wong, and Goran Zugic. 2019. Performance tuning and
scaling enterprise blockchain applications. arXiv preprint arXiv:1912.11456
(2019).

[28] Configure bootnodes 2020. https://consensys.net/docs/goquorum/en/latest/
configure-and-manage/configure/bootnodes/. [Online; accessed 14-August-
2023].

[29] Configure static nodes 2020. https://consensys.net/docs/goquorum/en/latest/
configure-and-manage/configure/static-nodes/. [Online; accessed 14-August-
2023].

[30] Consensus protocols 2020. https://docs.goquorum.consensys.net/concepts/
consensus. [Online; accessed 14-August-2023].

[31] Corda asynchronous flow invocations 2024. https://javanexus.com/blog/
inefficient-asynchronous-flow-invocations-corda. [Online; accessed 20-August-
2024].

[32] Corda documentation 2024. https://docs.r3.com/. [Online; accessed 20-August-
2024].

[33] Corda Notaries 2020. https://docs.r3.com/en/platform/corda/4.10/community/
key-concepts-notaries.html. [Online; accessed 14-August-2023].

[34] Corda performance tuning quick wins 2024. https://hiranhari.medium.com/
corda-performance-tuning-quick-wins-9fb4d38dc63c. [Online; accessed 20-
August-2024].

[35] Corda Throughput 2024. https://medium.com/corda/throughput-a-corda-story-
1bc2cb9b2b60. [Online; accessed 20-August-2024].

[36] Corda vs Hyperledger Fabric 2024. https://eleks.com/research/corda-vs-
hyperledger-fabric/. [Online; accessed 20-August-2024].

[37] Siwei Cui, Gang Zhao, Yifei Gao, Tien Tavu, and Jeff Huang. 2022. VRust:
Automated Vulnerability Detection for Solana Smart Contracts. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security
(Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New
York, NY, USA, 639–652. https://doi.org/10.1145/3548606.3560552

[38] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013. ElasTraS: An
Elastic, Scalable, and Self-Managing Transactional Database for the Cloud. 38,
1, Article 5 (apr 2013), 45 pages. https://doi.org/10.1145/2445583.2445588

[39] Mazin Debe, Khaled Salah, Raja Jayaraman, Ibrar Yaqoob, and Junaid Arshad.
2021. Trustworthy Blockchain Gateways for Resource-Constrained Clients and
IoT Devices. IEEE Access 9 (2021), 132875–132887. https://doi.org/10.1109/
ACCESS.2021.3115150

[40] Tien Tuan AnhDinh, JiWang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee
Tan. 2017. BLOCKBENCH: A Framework for Analyzing Private Blockchains. In
Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). ACM, New York, NY, USA, 1085–1100.
https://doi.org/10.1145/3035918.3064033

[41] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. 2019. MOF-BC: Amemory optimized
and flexible blockchain for large scale networks. Future Gener. Comput. Syst. 92,
C (mar 2019), 357–373. https://doi.org/10.1016/j.future.2018.10.002

[42] Zhengyi Du, Xiongtao Pang, and Haifeng Qian. 2023. PartitionChain: A
Scalable and Reliable Data Storage Strategy for Permissioned Blockchain.
IEEE Transactions on Knowledge and Data Engineering 35, 4 (2023), 4124–4136.
https://doi.org/10.1109/TKDE.2021.3136556

[43] Pankaj Dutta, Tsan-Ming Choi, Surabhi Somani, and Richa Butala. 2020.
Blockchain technology in supply chain operations: Applications, challenges
and research opportunities. Transportation Research Part E: Logistics and Trans-
portation Review 142 (2020), 102067. https://doi.org/10.1016/j.tre.2020.102067

[44] Molud Esmaili and Ken Christensen. 2024. Performance modeling of public
permissionless blockchains: A survey. arXiv:2402.18049 [cs.CR] https://arxiv.
org/abs/2402.18049

[45] Fabric documentation 2024. https://hyperledger-fabric.readthedocs.io/en/
latest/. [Online; accessed 20-August-2024].

[46] Fabric performance considerations 2024. https://hyperledger-fabric.
readthedocs.io/en/release-2.5/performance.html. [Online; accessed 20-August-
2024].

[47] Luciano García-Bañuelos, Alexander Ponomarev, Marlon Dumas, and Ingo
Weber. 2017. Optimized Execution of Business Processes on Blockchain. In
Business Process Management, Josep Carmona, Gregor Engels, and Akhil Kumar
(Eds.). Springer International Publishing, Cham, 130–146.

[48] Frank Christian Geyer, Hans-Arno Jacobsen, Ruben Mayer, and Peter Mandl.
2023. An End-to-End Performance Comparison of Seven Permissioned
Blockchain Systems. In Proceedings of the 24th International Middleware Confer-
ence (Bologna, Italy) (Middleware ’23). Association for Computing Machinery,
New York, NY, USA, 71–84. https://doi.org/10.1145/3590140.3629106

[49] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies.
In Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,

8

https://github.com/onplanetnowhere/AlgorandConsensusProtocolMD?tab=readme-ov-file
https://github.com/onplanetnowhere/AlgorandConsensusProtocolMD?tab=readme-ov-file
https://developer.algorand.org/docs/
https://developer.algorand.org/docs/run-a-node/reference/config/
https://developer.algorand.org/docs/run-a-node/reference/config/
https://developer.algorand.org/articles/algorand-boosts-performance-5x-in-latest-upgrade/
https://developer.algorand.org/articles/algorand-boosts-performance-5x-in-latest-upgrade/
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/guidelines/
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/guidelines/
 https://developer.algorand.org/articles/reaching-new-transaction-speeds-on-algorand/
 https://developer.algorand.org/articles/reaching-new-transaction-speeds-on-algorand/
https://algorandtechnologies.com/news/algorands-vault-fast-bootstrapping-for-the-algorand-cryptocurrency
https://algorandtechnologies.com/news/algorands-vault-fast-bootstrapping-for-the-algorand-cryptocurrency
https://doi.org/10.1145/3190508.3190538
https://medium.com/@subnetsdeployy/optimizing-performance-best-practices-for-avalanche-subnets-node-setup-a0f7a5a46b17
https://medium.com/@subnetsdeployy/optimizing-performance-best-practices-for-avalanche-subnets-node-setup-a0f7a5a46b17
https://medium.com/@subnetsdeployy/optimizing-performance-best-practices-for-avalanche-subnets-node-setup-a0f7a5a46b17
https://docs.avax.network/nodes/chain-configs/overview
https://docs.avax.network/nodes/chain-configs/overview
https://docs.avax.network/learn/avalanche-consensus
https://docs.avax.network/learn/avalanche-consensus
https://docs.avax.network/
https://docs.avax.network/nodes/configure/configs-flags
https://docs.avax.network/nodes/configure/configs-flags
https://docs.avax.network/nodes/configure/subnet-configs
https://docs.avax.network/nodes/configure/subnet-configs
https://doi.org/10.1109/CVCBT.2018.00013
https://doi.org/10.1109/CVCBT.2018.00013
https://blog.axway.com/learning-center/digital-security/risk-management/blockchain-api
https://blog.axway.com/learning-center/digital-security/risk-management/blockchain-api
https://bitquery.io/blog/blockchain-data-warehousing
https://bitquery.io/blog/blockchain-data-warehousing
https://www.halborn.com/blog/post/blockchains-storage-problem-is-growing-are-there-any-solutions
https://www.halborn.com/blog/post/blockchains-storage-problem-is-growing-are-there-any-solutions
https://doi.org/10.1109/Blockchain50366.2020.00042
https://doi.org/10.1109/Blockchain50366.2020.00042
https://doi.org/10.1145/3448016.3452823
https://doi.org/10.1145/3588704
https://doi.org/10.1145/3588704
https://arxiv.org/abs/2406.06318
https://arxiv.org/abs/2406.06318
https://consensys.net/docs/goquorum/en/latest/configure-and-manage/configure/bootnodes/
https://consensys.net/docs/goquorum/en/latest/configure-and-manage/configure/bootnodes/
https://consensys.net/docs/goquorum/en/latest/configure-and-manage/configure/static-nodes/
https://consensys.net/docs/goquorum/en/latest/configure-and-manage/configure/static-nodes/
https://docs.goquorum.consensys.net/concepts/consensus
https://docs.goquorum.consensys.net/concepts/consensus
https://javanexus.com/blog/inefficient-asynchronous-flow-invocations-corda
https://javanexus.com/blog/inefficient-asynchronous-flow-invocations-corda
https://docs.r3.com/
https://docs.r3.com/en/platform/corda/4.10/community/key-concepts-notaries.html
https://docs.r3.com/en/platform/corda/4.10/community/key-concepts-notaries.html
https://hiranhari.medium.com/corda-performance-tuning-quick-wins-9fb4d38dc63c
https://hiranhari.medium.com/corda-performance-tuning-quick-wins-9fb4d38dc63c
https://medium.com/corda/throughput-a-corda-story-1bc2cb9b2b60
https://medium.com/corda/throughput-a-corda-story-1bc2cb9b2b60
https://eleks.com/research/corda-vs-hyperledger-fabric/
https://eleks.com/research/corda-vs-hyperledger-fabric/
https://doi.org/10.1145/3548606.3560552
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1109/ACCESS.2021.3115150
https://doi.org/10.1109/ACCESS.2021.3115150
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1016/j.future.2018.10.002
https://doi.org/10.1109/TKDE.2021.3136556
https://doi.org/10.1016/j.tre.2020.102067
https://arxiv.org/abs/2402.18049
https://arxiv.org/abs/2402.18049
https://arxiv.org/abs/2402.18049
https://hyperledger-fabric.readthedocs.io/en/latest/
https://hyperledger-fabric.readthedocs.io/en/latest/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/performance.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/performance.html
https://doi.org/10.1145/3590140.3629106


51–68. https://doi.org/10.1145/3132747.3132757
[50] Seep Goel, Abhishek Singh, Rachit Garg, Mudit Verma, and Praveen Jayachan-

dran. 2018. Resource Fairness and Prioritization of Transactions in Permis-
sioned Blockchain Systems (Industry Track). In Proceedings of the 19th Inter-
national Middleware Conference Industry (Rennes, France) (Middleware ’18).
Association for Computing Machinery, New York, NY, USA, 46–53. https:
//doi.org/10.1145/3284028.3284035

[51] GoQuorum qlight 2020. https://consensys.net/docs/goquorum/en/latest/
concepts/qlight-node/. [Online; accessed 14-August-2023].

[52] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019.
FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second. In
2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
455–463. https://doi.org/10.1109/BLOC.2019.8751452

[53] Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier
Voron. 2023. Diablo: A Benchmark Suite for Blockchains. In 18th ACM European
Conference on Computer Systems (EuroSys). to appear.

[54] Tobias Guggenberger, Johannes Sedlmeir, Gilbert Fridgen, and André Luckow.
2022. An in-depth investigation of the performance characteristics of Hyper-
ledger Fabric. Computers Industrial Engineering 173 (2022), 108716. https:
//doi.org/10.1016/j.cie.2022.108716

[55] Michael Hammer and Arvola Chan. 1976. Index Selection in a Self-Adaptive
Data Base Management System. In Proceedings of the 1976 ACM SIGMOD
International Conference on Management of Data (Washington, D.C.) (SIG-
MOD ’76). Association for Computing Machinery, New York, NY, USA, 1–8.
https://doi.org/10.1145/509383.509385

[56] Timo Hegnauer. 2019. Design and development of a blockchain interoperability
api. Zürich, Switzerland, February (2019).

[57] Jun Wook Heo, Gowri Sankar Ramachandran, Ali Dorri, and Raja Jurdak. 2024.
Blockchain Data Storage Optimisations: A Comprehensive Survey. ACM Com-
put. Surv. 56, 7, Article 179 (apr 2024), 27 pages. https://doi.org/10.1145/3645104

[58] How Fabric networks are structured 2020. How Fabric networks are struc-
tured. https://hyperledger-fabric.readthedocs.io/en/latest/network/network.
html. [Online; accessed 14-August-2023].

[59] Huawei Huang, Jianru Lin, Baichuan Zheng, Zibin Zheng, and Jing Bian. 2020.
When Blockchain Meets Distributed File Systems: An Overview, Challenges,
and Open Issues. IEEE Access 8 (2020), 50574–50586. https://doi.org/10.1109/
ACCESS.2020.2979881

[60] Scott E. Hudson and Roger King. 1989. Cactis: A Self-Adaptive, Concurrent
Implementation of an Object-Oriented Database Management System. 14, 3
(sep 1989), 291–321. https://doi.org/10.1145/68012.68013

[61] Hyperledger Fabric issues 2024. https://medium.com/novai-hyperledger-fabric-
101/common-issues-and-handling-in-hyperledger-fabric-implementation-
e9cc625e7974. [Online; accessed 20-August-2024].

[62] Zsolt István, Alessandro Sorniotti, and Marko Vukolić. 2018. Streamchain: Do
blockchains need blocks?. In Proceedings of the 2nd Workshop on Scalable and
Resilient Infrastructures for Distributed Ledgers. 1–6.

[63] Haris Javaid, Chengchen Hu, and Gordon Brebner. 2019. Optimizing Validation
Phase of Hyperledger Fabric. In 2019 IEEE 27th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). 269–275. https://doi.org/10.1109/MASCOTS.2019.00038

[64] Tommy Koens, Scott King, Matthijs van den Bos, Cees van Wijk, and Aleksei
Koren. 2019. Solutions for the corda security and privacy trade-off: having your
cake and eating it. White Paper (2019).

[65] Kadir Korkmaz, Joachim Bruneau-Queyreix, Sonia Ben Mokhtar, and Laurent
Réveillère. 2022. ALDER: Unlocking blockchain performance by multiplexing
consensus protocols. In 2022 IEEE 21st International Symposium on Network
Computing and Applications (NCA), Vol. 21. 9–18. https://doi.org/10.1109/
NCA57778.2022.10013556

[66] Jan Kossmann. 2018. Self-Driving: From General Purpose to Specialized DBMSs..
In PhD@ VLDB.

[67] Jan Kossmann and Rainer Schlosser. 2020. Self-driving database systems: a
conceptual approach. Distributed and Parallel Databases 38 (2020), 795–817.

[68] Sushil Kumar. 2003. Oracle database 10g: The self-managing database. White
Paper (2003).

[69] Guilain Leduc, Sylvain Kubler, and Jean-Philippe Georges. 2022. Sabine: Self-
Adaptive BlockchaIn coNsEnsus. In 2022 9th International Conference on Fu-
ture Internet of Things and Cloud (FiCloud). 234–240. https://doi.org/10.1109/
FiCloud57274.2022.00039

[70] Derek Leung, Adam Suhl, Yossi Gilad, and Nickolai Zeldovich. 2018. Vault: Fast
Bootstrapping for the Algorand Cryptocurrency. Cryptology ePrint Archive,
Paper 2018/269. https://doi.org/10.14722/ndss.2019.23313

[71] Mingxuan Li, Yazhe Wang, Shuai Ma, Chao Liu, Dongdong Huo, Yu Wang, and
Zhen Xu. 2023. Auto-Tuning with Reinforcement Learning for Permissioned
Blockchain Systems. Proc. VLDB Endow. 16, 5 (jan 2023), 1000–1012. https:
//doi.org/10.14778/3579075.3579076

[72] Xiangyu Li, Xinyu Wang, Tingli Kong, Junhao Zheng, and Min Luo. 2022. From
Bitcoin to Solana – Innovating Blockchain Towards Enterprise Applications.
In Blockchain – ICBC 2021, Kisung Lee and Liang-Jie Zhang (Eds.). Springer

International Publishing, Cham, 74–100.
[73] Wei Liang, Yongkai Fan, Kuan-Ching Li, Dafang Zhang, and Jean-Luc Gaudiot.

2020. Secure Data Storage and Recovery in Industrial Blockchain Network
Environments. IEEE Transactions on Industrial Informatics 16, 10 (2020), 6543–
6552. https://doi.org/10.1109/TII.2020.2966069

[74] Mengting Liu, F. Richard Yu, Yinglei Teng, Victor C. M. Leung, and Mei Song.
2019. Performance Optimization for Blockchain-Enabled Industrial Internet
of Things (IIoT) Systems: A Deep Reinforcement Learning Approach. IEEE
Transactions on Industrial Informatics 15, 6 (2019), 3559–3570. https://doi.org/
10.1109/TII.2019.2897805

[75] Lin Ma. 2021. Self-Driving Database Management Systems: Forecasting, Modeling,
and Planning. Ph.D. Dissertation. Carnegie Mellon University.

[76] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo,
and Geoffrey J. Gordon. 2018. Query-Based Workload Forecasting for Self-
Driving Database Management Systems. In Proceedings of the 2018 Inter-
national Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 631–645.
https://doi.org/10.1145/3183713.3196908

[77] Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan Shen
Lim, Prashanth Menon, and Andrew Pavlo. 2021. MB2: Decomposed Behavior
Modeling for Self-Driving Database Management Systems. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD ’21). Association for Computing Machinery, New York, NY, USA,
1248–1261. https://doi.org/10.1145/3448016.3457276

[78] Ahmed Afif Monrat, Olov Schelén, and Karl Andersson. 2020. Performance
Evaluation of Permissioned Blockchain Platforms. In 2020 IEEE Asia-Pacific
Conference on Computer Science and Data Engineering (CSDE). 1–8. https:
//doi.org/10.1109/CSDE50874.2020.9411380

[79] Multichain Configurations 2020. https://www.multichain.com/developers/
blockchain-parameters/. [Online; accessed 14-August-2023].

[80] Multichain Data Streams 2020. https://www.multichain.com/developers/data-
streams/. [Online; accessed 14-August-2023].

[81] Multichain documentation 2024. https://www.multichain.com/developers/.
[Online; accessed 20-August-2024].

[82] Pezhman Nasirifard, Ruben Mayer, and Hans-Arno Jacobsen. 2019. FabricCRDT:
A Conflict-Free Replicated Datatypes Approach to Permissioned Blockchains.
In Proceedings of the 20th International Middleware Conference (Davis, CA, USA)
(Middleware ’19). Association for Computing Machinery, New York, NY, USA,
110–122. https://doi.org/10.1145/3361525.3361540

[83] Keerthi Nelaturu, Sidi Mohamed Beillahi, Fan Long, and Andreas Veneris. 2021.
Smart Contracts Refinement for Gas Optimization. In 2021 3rd Conference on
Blockchain Research Applications for Innovative Networks and Services (BRAINS).
229–236. https://doi.org/10.1109/BRAINS52497.2021.9569819

[84] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017.
Self-Driving Database Management Systems.. In CIDR, Vol. 4. 1.

[85] Andrew Pavlo, Matthew Butrovich, Lin Ma, Prashanth Menon, Wan Shen Lim,
Dana Van Aken, and William Zhang. 2021. Make Your Database System Dream
of Electric Sheep: Towards Self-Driving Operation. Proc. VLDB Endow. 14, 12
(jul 2021), 3211–3221. https://doi.org/10.14778/3476311.3476411

[86] Giuseppe Antonio Pierro and Roberto Tonelli. 2022. Can Solana be the Solution
to the Blockchain Scalability Problem?. In 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). 1219–1226. https:
//doi.org/10.1109/SANER53432.2022.00144

[87] Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong Tha-
jchayapong. 2017. Performance analysis of private blockchain platforms in
varying workloads. In 2017 26th International Conference on Computer Commu-
nication and Networks (ICCCN). IEEE, 1–6.

[88] Process Mining Blockchain 2024. https://research.aimultiple.com/process-
mining-blockchain/. [Online; accessed 20-August-2024].

[89] Quorum documentation 2024. https://goquorum.readthedocs.io/. [Online;
accessed 20-August-2024].

[90] Ravi Kiran Raman and Lav R. Varshney. 2018. Dynamic Distributed Storage
for Blockchains. In 2018 IEEE International Symposium on Information Theory
(ISIT). 2619–2623. https://doi.org/10.1109/ISIT.2018.8437335

[91] Sara Rouhani and Ralph Deters. 2019. Security, Performance, and Applications
of Smart Contracts: A Systematic Survey. IEEE Access 7 (2019), 50759–50779.
https://doi.org/10.1109/ACCESS.2019.2911031

[92] Na Ruan, Dongli Zhou, and Weijia Jia. 2020. Ursa: Robust Performance for
Nakamoto Consensus with Self-Adaptive Throughput. ACM Trans. Internet
Technol. 20, 4, Article 41 (nov 2020), 26 pages. https://doi.org/10.1145/3412341

[93] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang
Chen, and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-
Order-Validate Blockchains. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 543–557.
https://doi.org/10.1145/3318464.3389693

9

https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3284028.3284035
https://doi.org/10.1145/3284028.3284035
https://consensys.net/docs/goquorum/en/latest/concepts/ qlight-node/
https://consensys.net/docs/goquorum/en/latest/concepts/ qlight-node/
https://doi.org/10.1109/BLOC.2019.8751452
https://doi.org/10.1016/j.cie.2022.108716
https://doi.org/10.1016/j.cie.2022.108716
https://doi.org/10.1145/509383.509385
https://doi.org/10.1145/3645104
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://doi.org/10.1109/ACCESS.2020.2979881
https://doi.org/10.1109/ACCESS.2020.2979881
https://doi.org/10.1145/68012.68013
https://medium.com/novai-hyperledger-fabric-101/common-issues-and-handling-in-hyperledger-fabric-implementation-e9cc625e7974
https://medium.com/novai-hyperledger-fabric-101/common-issues-and-handling-in-hyperledger-fabric-implementation-e9cc625e7974
https://medium.com/novai-hyperledger-fabric-101/common-issues-and-handling-in-hyperledger-fabric-implementation-e9cc625e7974
https://doi.org/10.1109/MASCOTS.2019.00038
https://doi.org/10.1109/NCA57778.2022.10013556
https://doi.org/10.1109/NCA57778.2022.10013556
https://doi.org/10.1109/FiCloud57274.2022.00039
https://doi.org/10.1109/FiCloud57274.2022.00039
https://doi.org/10.14722/ndss.2019.23313
https://doi.org/10.14778/3579075.3579076
https://doi.org/10.14778/3579075.3579076
https://doi.org/10.1109/TII.2020.2966069
https://doi.org/10.1109/TII.2019.2897805
https://doi.org/10.1109/TII.2019.2897805
https://doi.org/10.1145/3183713.3196908
https://doi.org/10.1145/3448016.3457276
https://doi.org/10.1109/CSDE50874.2020.9411380
https://doi.org/10.1109/CSDE50874.2020.9411380
https://www.multichain.com/developers/blockchain-parameters/
https://www.multichain.com/developers/blockchain-parameters/
https://www.multichain.com/developers/data-streams/
https://www.multichain.com/developers/data-streams/
https://www.multichain.com/developers/
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1109/BRAINS52497.2021.9569819
https://doi.org/10.14778/3476311.3476411
https://doi.org/10.1109/SANER53432.2022.00144
https://doi.org/10.1109/SANER53432.2022.00144
https://research.aimultiple.com/process-mining-blockchain/
https://research.aimultiple.com/process-mining-blockchain/
https://goquorum.readthedocs.io/
https://doi.org/10.1109/ISIT.2018.8437335
https://doi.org/10.1109/ACCESS.2019.2911031
https://doi.org/10.1145/3412341
https://doi.org/10.1145/3318464.3389693


[94] Gary Shapiro, Christopher Natoli, and Vincent Gramoli. 2020. The Perfor-
mance of Byzantine Fault Tolerant Blockchains. In 2020 IEEE 19th Interna-
tional Symposium on Network Computing and Applications (NCA). 1–8. https:
//doi.org/10.1109/NCA51143.2020.9306742

[95] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the Lines Between Blockchains and Database Systems: The Case
of Hyperledger Fabric. In Proceedings of the 2019 International Conference on
Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). ACM, New York,
NY, USA, 105–122. https://doi.org/10.1145/3299869.3319883

[96] Jianfeng Shi, Heng Wu, Diaohan Luo, Heran Gao, and Wenbo Zhang. 2023.
InstantChain: Enhancing Order-Execute Blockchain Systems for Latency-
Sensitive Applications. In Database Systems for Advanced Applications, Xin
Wang, Maria Luisa Sapino, Wook-Shin Han, Amr El Abbadi, Gill Dobbie, Zhiy-
ong Feng, Yingxiao Shao, and Hongzhi Yin (Eds.). Springer Nature Switzerland,
Cham, 483–498.

[97] Smart contracts slow blockchains 2024. https://www.multichain.com/blog/2015/
11/smart-contracts-slow-blockchains/. [Online; accessed 20-August-2024].

[98] Solana best practices 2024. https://www.c-sharpcorner.com/article/
optimization-techniques-and-best-practices-in-solana/. [Online; accessed
20-August-2024].

[99] Solana compute optimize 2024. https://solana.com/developers/guides/advanced/
how-to-optimize-compute. [Online; accessed 20-August-2024].

[100] solana documentation 2024. https://solana.com/docs. [Online; accessed 20-
August-2024].

[101] Solana RPC node optimization 2024. https://www.bydfi.com/en/questions/what-
are-the-best-practices-for-optimizing-the-performance-of-an-rpc-node-on-
solana. [Online; accessed 20-August-2024].

[102] Solana RPC node setup 2024. https://blockchain.oodles.io/dev-blog/how-to-
setup-and-run-solana-rpc-node/?utm_source=medium. [Online; accessed
20-August-2024].

[103] Solana scalability challenges 2024. https://medium.com/vanguard-industry-
foresight/solanas-failing-transaction-problem-addressing-the-network-s-
scalability-challenges-dbe9a93814e2. [Online; accessed 20-August-2024].

[104] Solana throughput challenges 2024. https://medium.com/coinmonks/solanas-
sol-chain-throughput-challenges-what-s-next-ce8e0b938b02. [Online; ac-
cessed 20-August-2024].

[105] Solidity optimization techniques 2024. https://101blockchains.com/top-solidity-
gas-optimization-techniques/. [Online; accessed 20-August-2024].

[106] Zhiyuan Sun, Xiapu Luo, and Yinqian Zhang. 2023. Panda: Security Analysis
of Algorand Smart Contracts. In 32nd USENIX Security Symposium (USENIX
Security 23). USENIX Association, Anaheim, CA, 1811–1828. https://www.
usenix.org/conference/usenixsecurity23/presentation/sun

[107] P. Thakkar, S. Nathan, and B. Viswanathan. 2018. Performance Benchmarking
and Optimizing Hyperledger Fabric Blockchain Platform. In 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). 264–276. https://doi.org/10.1109/
MASCOTS.2018.00034

[108] Transaction limits and optimizations 2024. https://developers.circle.com/w3s/
docs/transaction-limits-and-optimizations. [Online; accessed 20-August-2024].

[109] Understanding blockchain application performance 2024. https:
//www.linkedin.com/pulse/understanding-blockchain-application-
performance-guide-ramalingam/. [Online; accessed 20-August-2024].

[110] Wil van der Aalst. 2012. Process Mining: Overview and Opportunities. 3, 2,
Article 7 (jul 2012), 17 pages. https://doi.org/10.1145/2229156.2229157

[111] YiboWang, Kai Li, Yuzhe Tang, Jiaqi Chen, Qi Zhang, Xiapu Luo, and Ting Chen.
2023. Towards Saving Blockchain Fees via Secure and Cost-Effective Batching
of Smart-Contract Invocations. IEEE Transactions on Software Engineering 49, 4
(2023), 2980–2995. https://doi.org/10.1109/TSE.2023.3237123

[112] S. Wilson, K. Adu-Duodu, Y. Li, E. Solaiman, O. Rana, S. Dustdar, and R. Ranjan.
2024. Data Management Challenges in Blockchain-Based Applications. IEEE
Internet Computing 28, 01 (jan 2024), 70–80. https://doi.org/10.1109/MIC.2023.
3319152

[113] Maximilian Wohrer and Uwe Zdun. 2018. Smart contracts: security patterns
in the ethereum ecosystem and solidity. In 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). 2–8. https://doi.org/10.
1109/IWBOSE.2018.8327565

[114] Chenyuan Wu, Bhavana Mehta, Mohammad Javad Amiri, Ryan Marcus, and
Boon Thau Loo. 2023. AdaChain: A Learned Adaptive Blockchain. Proc. VLDB
Endow. 16, 8 (jun 2023), 2033–2046. https://doi.org/10.14778/3594512.3594531

[115] Hanqing Wu, Jiannong Cao, Yanni Yang, Cheung Leong Tung, Shan Jiang, Bin
Tang, Yang Liu, Xiaoqing Wang, and Yuming Deng. 2019. Data Management
in Supply Chain Using Blockchain: Challenges and a Case Study. In 2019 28th
International Conference on Computer Communication and Networks (ICCCN).
1–8. https://doi.org/10.1109/ICCCN.2019.8846964

[116] Anatoly Yakovenko. 2018. Solana: A new architecture for a high performance
blockchain v0. 8.13. Whitepaper (2018).

[117] Tao Ye, Min Luo, Yi Yang, Kim-Kwang Raymond Choo, and Debiao He. 2023.
A Survey on Redactable Blockchain: Challenges and Opportunities. IEEE

Transactions on Network Science and Engineering 10, 3 (2023), 1669–1683.
https://doi.org/10.1109/TNSE.2022.3233448

[118] Muhammad Zaid, Muhammad Waheed Akram, Naveed Ahmed, and Shahzad
Saleem. 2019. Web Server Integrity Protection Using Blockchain. In 2019 In-
ternational Conference on Frontiers of Information Technology (FIT). 239–2395.
https://doi.org/10.1109/FIT47737.2019.00052

[119] Gengrui Zhang, Fei Pan, Sofia Tijanic, and Hans-Arno Jacobsen. 2023. Pres-
tigeBFT: Revolutionizing View Changes in BFT Consensus Algorithms with
Reputation Mechanisms. arXiv preprint arXiv:2307.08154 (2023).

[120] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yang-
tao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An End-
to-End Automatic Cloud Database Tuning System Using Deep Reinforcement
Learning. In Proceedings of the 2019 International Conference on Management of
Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Ma-
chinery, New York, NY, USA, 415–432. https://doi.org/10.1145/3299869.3300085

[121] Xiongfei Zhao and Yain-Whar Si. 2021. Dynamic Transaction Storage Strategies
for a Sustainable Blockchain. In 2021 IEEE International Conference on Services
Computing (SCC). 309–318. https://doi.org/10.1109/SCC53864.2021.00044

[122] Xuanhe Zhou, Lianyuan Jin, Ji Sun, Xinyang Zhao, Xiang Yu, Jianhua Feng,
Shifu Li, Tianqing Wang, Kun Li, and Luyang Liu. 2021. DBMind: A Self-
Driving Platform in OpenGauss. Proc. VLDB Endow. 14, 12 (jul 2021), 2743–2746.
https://doi.org/10.14778/3476311.3476334

10

https://doi.org/10.1109/NCA51143.2020.9306742
https://doi.org/10.1109/NCA51143.2020.9306742
https://doi.org/10.1145/3299869.3319883
https://www.multichain.com/blog/2015/11/smart-contracts-slow-blockchains/
https://www.multichain.com/blog/2015/11/smart-contracts-slow-blockchains/
https://www.c-sharpcorner.com/article/optimization-techniques-and-best-practices-in-solana/
https://www.c-sharpcorner.com/article/optimization-techniques-and-best-practices-in-solana/
https://solana.com/developers/guides/advanced/how-to-optimize-compute
https://solana.com/developers/guides/advanced/how-to-optimize-compute
https://solana.com/docs
https://www.bydfi.com/en/questions/what-are-the-best-practices-for-optimizing-the-performance-of-an-rpc-node-on-solana
https://www.bydfi.com/en/questions/what-are-the-best-practices-for-optimizing-the-performance-of-an-rpc-node-on-solana
https://www.bydfi.com/en/questions/what-are-the-best-practices-for-optimizing-the-performance-of-an-rpc-node-on-solana
https://blockchain.oodles.io/dev-blog/how-to-setup-and-run-solana-rpc-node/?utm_source=medium
https://blockchain.oodles.io/dev-blog/how-to-setup-and-run-solana-rpc-node/?utm_source=medium
https://medium.com/vanguard-industry-foresight/solanas-failing-transaction-problem-addressing-the-network-s-scalability-challenges-dbe9a93814e2
https://medium.com/vanguard-industry-foresight/solanas-failing-transaction-problem-addressing-the-network-s-scalability-challenges-dbe9a93814e2
https://medium.com/vanguard-industry-foresight/solanas-failing-transaction-problem-addressing-the-network-s-scalability-challenges-dbe9a93814e2
https://medium.com/coinmonks/solanas-sol-chain-throughput-challenges-what-s-next-ce8e0b938b02
https://medium.com/coinmonks/solanas-sol-chain-throughput-challenges-what-s-next-ce8e0b938b02
https://101blockchains.com/top-solidity-gas-optimization-techniques/
https://101blockchains.com/top-solidity-gas-optimization-techniques/
https://www.usenix.org/conference/usenixsecurity23/presentation/sun
https://www.usenix.org/conference/usenixsecurity23/presentation/sun
https://doi.org/10.1109/MASCOTS.2018.00034
https://doi.org/10.1109/MASCOTS.2018.00034
https://developers.circle.com/w3s/docs/transaction-limits-and-optimizations
https://developers.circle.com/w3s/docs/transaction-limits-and-optimizations
https://www.linkedin.com/pulse/understanding-blockchain-application-performance-guide-ramalingam/
https://www.linkedin.com/pulse/understanding-blockchain-application-performance-guide-ramalingam/
https://www.linkedin.com/pulse/understanding-blockchain-application-performance-guide-ramalingam/
https://doi.org/10.1145/2229156.2229157
https://doi.org/10.1109/TSE.2023.3237123
https://doi.org/10.1109/MIC.2023.3319152
https://doi.org/10.1109/MIC.2023.3319152
https://doi.org/10.1109/IWBOSE.2018.8327565
https://doi.org/10.1109/IWBOSE.2018.8327565
https://doi.org/10.14778/3594512.3594531
https://doi.org/10.1109/ICCCN.2019.8846964
https://doi.org/10.1109/TNSE.2022.3233448
https://doi.org/10.1109/FIT47737.2019.00052
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1109/SCC53864.2021.00044
https://doi.org/10.14778/3476311.3476334

	Abstract
	1 Introduction
	2 Background
	2.1 Hyperledger Fabric
	2.2 Quorum
	2.3 Multichain
	2.4 Corda
	2.5 Solana
	2.6 Algorand
	2.7 Avalanche

	3 Performance Issues
	3.1 System Level
	3.2 Data Level
	3.3 Application Level

	4 Performance Optimization
	4.1 System Level
	4.2 Data Level
	4.3 Application Level

	5 Real-Time Optimization
	5.1 System Level
	5.2 Data Level
	5.3 Application Level

	6 Case Study: Hyperledger Fabric
	7 Conclusion
	References

