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ABSTRACT
Open-set object recognition plays a significant role in today’s pro-
duction and daily life, such as in surface defect detection, biometric
identification, and autonomous driving recognition. However, due
to the diversity of unknown categories and the complexity of sce-
narios, existing methods often perform poorly. Therefore, open-set
object recognition remains an important and popular research topic.
Recently, collaborative utilization of multiple pre-trained Large Lan-
guage Models (LLMs) has emerged rapidly, which becomes a new
research hotspot in addressing open-set object recognition task.
Among this, a core challenge lies in amplifying the strengths of
individual LLM while mitigating their weaknesses. In this paper,
we propose a novel joint framework tailored for open-set object
recognition tasks, aiming to more efficiently harness the capabilities
of diverse LLMs and Knowledge Graphs(KGs). Initially, for the text
data generated by textual LLMs, we use Wikipedia to correct and
complete it. Then, we designed a text-image multi-modal fusion
method to further correct and complete the text information by
utilizing the implicit semantic information in the image. Addition-
ally, we propose some novel designs to alleviate the hallucination
issue of LLMs and reduce their instability. Extensive experiments
demonstrate that our approach outperforms all the comparison
methods.
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1 INTRODUCTION
Open-set object recognition aims to identify if an object is from a
closed-set class that has appeared during training, or an open-set
class that has not been encountered in the training set[49]. It is
commonly encountered in daily life and represents a fundamental
yet critical task. Its applications span various domains including
autonomous driving[24], malware classification[7], medical image
analysis[50], and surface defect detection[31], etc. The failure of
open-set object recognition tasks can lead to severe consequences.
Therefore, the academic community has continuously engaged and
proposed numerous excellent methodologies[14, 22, 46, 55].

For open-set object recognition tasks, the core challenge lies in
the selection of discriminate features while mitigating the effects
of spurious-discriminative features. Spurious-discriminative fea-
tures refer to perform well within closed-set classes but may cause
confusion between open-set classes and closed-set classes[49]. Pre-
vious researches[45, 48] have suggested that a good open-set object
recognition network minimizes reliance on spurious-discriminative
features, thereby enabling more discriminative features and conse-
quently enhancing recognition accuracy. For Example, as shown in
Fig 1, the feature "with bill" belongs to a spurious-discriminative
characteristic, which should be avoided as much as possible. To ad-
dress this issue, researchers have made numerous attempts. Among
them, a typical approach is to incorporate additional virtual open-
set classes to aid in determining the attribution of original categories[21,
22, 45]. These methods have achieved certain effects, but due to
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the vast diversity of the real world, open-set object recognition still
poses significant challenges. Moreover, numerous approaches re-
train the dataset to enable the classifier to adapt to new categories[34].
However, due to privacy concerns or other various reasons, some
data becomes inaccessible, rendering the retraining process chal-
lenging.

Recently, research on Large Language Models(LLMs) has become
a hot topic, and LLMs have also been utilized to tackle various down-
stream tasks[16, 17, 51]. Furthermore, by combining multiple LLMs
to leverage their respective strengths and compensate for their
weaknesses, remarkable results have been achieved in handling
downstream tasks collaboratively[49, 62, 64]. This paper inspired
by LMC[49], our method also utilizes the collaborative manner of
LLMs, making full use of the respective advantages of ChatGPT[6],
CLIP[1], DALL-E[38], and DINO[61] to tackle the open-set object
recognition task. However, despite the excellent performance of
LLMs, they also possess some inherent drawbacks, such as the issue
of factual hallucinations. Factual hallucinations can be understood
as the appearance of seemingly genuine yet incorrect or distorted
facts during the perception or generation of information. In the
context of LLMs or Artificial Intelligence(AI), this typically refers
to the production of outputs by the model that do not align with
factual reality[26]. Existing research [5, 11, 40, 56]indicates that
the main limitation of LLMs lies in their reliance solely on massive
training datasets for knowledge reservoirs, without the capability
to communicate with the external world in real-time.

As a crucial part of the knowledge representation system, Knowl-
edge Graphs (KGs) can store a vast amount of knowledge that is
closely related to the real world. Through rigorous reasoning, these
pieces of knowledge ensure the coherence and causality of infor-
mation. Therefore, the application of KGs is widespread in the field
of knowledge modeling. Surprisingly, the internal knowledge of
KGs and LLMs can complement each other, making the expression
and utilization of knowledge more complete[59]. Hence, leveraging
KGs to refine the incomplete outputs of LLMs presents an excel-
lent solution. To address this issue, some methods[4, 13, 26] have
introduced Knowledge Graphs(KGs) and utilized the additional
knowledge within them to correct the erroneous or incomplete
responses of LLMs.

However, these methods are solely applied within a single LLM
and have not been explored under the condition of multiple LLMs
collaborating or in a multimodal context. Moreover, they have not
addressed the issue of factual hallucinations for open-set object
recognition tasks.

In this paper, regarding the open-set object recognition task, we
propose an optimized collaborative LLMs method, leveraging the
unique strengths of various LLMs to fully exploit their advantages
under multi-modal conditions. Additionally, we have introduced
KGs to mitigate the factual hallucination issue originated from
LLMs. Contributions of this paper can be summarized as follows:

• We propose an enhanced collaborative LLMs method, incor-
porating KGs to alleviate the prevalent factual hallucination
issue in LLMs.

• We propose an image-text knowledge fusion method that
elevates the performance of open-set object recognition
under multi-modal conditions.

• Comprehensive experiments demonstrate that our approach
outperforms all the comparison methods.

The remainder of this paper is organized as follows: Section 2
introduces the related work, including the latest developments in
open-set object recognition methods, the issue of textual hallucina-
tions in LLMs, and the progress of methods enhancing pre-trained
large models with Knowledge Graphs. Section 3 presents the de-
tails of our proposed method, encompassing the LLMs iterative
cycling, text-enhancement module, and text-image knowledge fu-
sion module. Subsequently, we conduct extensive experiments in
Section 4, including comparison experiments with other methods
and ablation studies on various modules of our approach. Finally,
we summarize the work of the entire paper.

2 RELATEDWORKS
2.1 Open-set Object Recognition
Open-set object recognition, a pivotal concept in computer vision
and machine learning, refers to the capability of a model to not
only discern known object categories present in the training set but
also identify instances that do not belong to any of the predefined
classes, i.e., objects of unknown categories[60]. This recognition
prowess endows the model with enhanced robustness and flexibility
when confronted with the intricacies of real-world scenarios. Com-
mon strategies for open-set recognition encompass quantifying
prediction uncertainty[52], modifying the softmax layer[46], and
integrating generative and discriminative models[55]. The quantifi-
cation of prediction uncertainty often leverages entropy or softmax
scores to identify instances where the model exhibits a lack of
confidence or encounters unfamiliar patterns. Adjustments to the
softmax layer, exemplified by the OpenMax algorithm, involve re-
fining the layer through extreme value theory to analyze distance
distributions, thereby mitigating misclassifications of unknown
classes.

The integration of generative and discriminative models for
open-set recognition is multifaceted. On the generative side, data
generation techniques can produce synthetic images of hypothetical
unknown classes to augment model training. Conversely, discrimi-
native approaches, leveraging techniques such as clustering or deep
neural networks, discern between known and unknown categories.
Open-set object recognition holds immense potential for applica-
tion across diverse domains. In autonomous vehicle systems, for
instance, it is crucial for vehicles to detect a myriad of known and
unknown obstacles on the road. Similarly, in intelligent surveillance
systems, cameras must differentiate between identified individuals
and those not previously encountered. Furthermore, in medical
image analysis, models must be capable of recognizing both known
disease types and potential novel pathologies.

There have been numerous studies on open-set object recogni-
tion task[15, 52, 60], and it remains a hot research issue. Initially,
Bendale et al.[9] first attempted to utilize deep neural networks for
the task of open-set object recognition. Subsequently, Ge et al.[25]
presented a conceptually new and flexible method for multi-class
open-set classification. Unlike previous methods, their method is
able to provide explicit modelling and decision score for unknown
classes. After that, Neal et al.[46] introduced a dataset augmentation
technique that being called counterfactual image generation, which
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Figure 1: Description of spurious-discriminative features. As can be seen from the figure, it is easy to distinguish Woodpecker,
Teddy dog and Persian cat by using the feature of "with bill". However, it is difficult to distinguish between Bald Eagle and
Black Stork. Among them, DIAS is a recently published open-set object recognition method.

based on generative adversarial networks, generates examples that
are close to training set examples yet do not belong to any training
category. Later on, Kong et al.[35] proposed OpenGAN, which ad-
dresses the limitation of each approach by combining them with
several technical insights. Then, Vaze et al.[55] first demonstrated
that the ability of a classifier to make the "none-of-above" deci-
sion is highly correlated with its accuracy on the closed-set classes.
Besides, Esmaeilpour et al.[22] studied the problem of zero-shot out-
of-distribution (OOD) detection, which still performs the same two
tasks in testing but has no training except using the given known
class names, and then proposed a novel method (called ZOC) to
solve the problem. Recently, Fu et al.[23] hold a opinion that current
open set recognition techniques mainly concentrate on construct-
ing decision boundaries rooted in holistic feature representations,
demonstrating proficiency across broad-category image datasets.
Nevertheless, when dealing with fine-grained image collections,
where objects exhibit remarkable overall similarity, differentiating
between known and novel classes solely based on these holistic fea-
tures becomes challenging. To tackle this limitation, they introduce
the Progressive Learning Vision Transformer (PLViT), integrating
a coarse-to-fine refinement approach. This approach dynamically
combines and optimizes both holistic and localized feature repre-
sentations within an angular framework, thereby enhancing the
discrimination capability of decision boundaries.

Most relevant to our work, Qu et al.[49] proposed a novel frame-
work named LMC to tackle the open-set object recognition chal-
lenge via collaborating different off-the-shelf large models in a
training-free manner. Based on LMC, we introduce KGs and multi-
modal LLMs, which perfected the LMC method, and achieved satis-
factory results.

2.2 Hallucination in LLMs
Within the context of LLMs, hallucination refers to the phenome-
non where the model produces text that appears plausible yet is
erroneous or not grounded in the provided input[32]. These fabri-
cated responses or information may be untrue, inaccurate, or even
contradictory to established world knowledge. Hallucinations in
LLMs manifest in various forms, encompassing input-conflicting
hallucination[54], content-conflicting hallucination[37], and fact-
conflicting hallucination[44].

Input-conflicting hallucination arises when the generated con-
tent deviates from the user’s input. For instance, when tasked with
summarizing a specific document, an LLM may produce a sum-
mary that is incongruent with the document’s content. Content-
conflicting Hallucination occurs when the generated text contra-
dicts previously generated information. This typically emerges in
multi-turn dialogues or long-form text generation, where the model
struggles to maintain contextual coherence. Fact-conflicting hallu-
cination refers to the generation of content that does not align with
known factual information. This can stem from the model’s learn-
ing of erroneous knowledge during pre-training or from a failure
to correctly apply that knowledge during generation. Addressing
these hallucinations poses a significant challenge, necessitating a
multifaceted approach that encompasses enhancing the quality of
training data, refining model optimization strategies, incorporating
external knowledge bases for validation, and improving the model’s
contextual understanding capabilities.

In Natural Language Processing (NLP), the issue of factual hal-
lucinations emerging around LLMs has consistently garnered sig-
nificant attention from researchers [32]. Initially, Tian et al.[54]
first conjectured that hallucination can be caused by an encoder-
decoder model generating content phrases without attending to
the source. So they proposed a confidence score to ensure that the
model attends to the source whenever necessary. Subsequently, Lee
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et al. [37] finded that existing language modeling datasets contain
many near-duplicate examples and long repetitive substrings and
develop two tools to deduplicate training datasets. Meanwhile, Bi-
derman et al.[10] presented several case studies including novel
results in memorization, term frequency effects on few-shot perfor-
mance, and reducing gender bias. Later on, Gunasekar et al. [27]
introduced phi-1, a new LLM for code, with significantly smaller
size than competing models. Recently, Manakul et al.[44] proposed
“SelfChecKGsPT”, a simple sampling-based approach that can be
used to fact-check the responses of black-box models in a zero-
resource fashion, which leverages the simple idea that if an LLM
has knowledge of a given concept, sampled responses are likely to
be similar and contain consistent facts.

2.3 Enhancing LLMs with KGs
Enhancing LLMs with Knowledge Graphs (KGs) represents an ap-
proach aimed at augmenting the capabilities of LLMs by leveraging
the structured knowledge encapsulated within KGs[26]. This in-
tegration strategy seeks to enhance the accuracy, reliability, and
richness of LLMs’ performance in content generation, question
answering, and complex task execution.

While LLMs exhibit formidable proficiency in processing natural
language, their knowledge base primarily stems from the train-
ing data, potentially leading to knowledge gaps or inaccuracies in
specific domains or factual details[8]. By incorporating KGs as ex-
ternal knowledge sources, LLMs can access a more comprehensive
and accurate repository of factual information, thereby fostering
greater accuracy in their responses and task execution. Further-
more, LLMs are prone to generating hallucinations[32]. Integrating
factual knowledge from KGs into LLMs’ reasoning processes can
significantly mitigate this phenomenon, bolstering their reliability.
For instance, research has demonstrated that Knowledge Graph-
based Refinement (KGR) frameworks can leverage factual knowl-
edge within KGs to refine LLMs’ initial draft responses, thereby
alleviating factual hallucinations during the reasoning process[26].
Moreover, KGs organize information in a graph-structured for-
mat, enabling the explicit representation of relationships and at-
tributes between entities[33]. This structured representation facili-
tates LLMs’ comprehension and processing of complex semantic
relationships, subsequently elevating their performance in complex
reasoning tasks. In scenarios involving multi-step reasoning or the
synthesis of multiple factual inputs, KGs provide LLMs with essen-
tial context and associative information, enabling them to complete
the reasoning process with greater precision. Consequently, the
fusion of LLMs and KGs further expands the applicability of LLMs.
In domains such as question answering systems, dialogue systems,
and recommender systems, LLMs augmented with KGs can gener-
ate responses or recommendations that are more accurate, diverse,
and personalized. Additionally, in contexts demanding heightened
accuracy and reliability, such as healthcare and legal services, KGs-
enhanced LLMs offer more dependable services and support.

The research on utilizing KGs to enhance LLMs has entered a
period of rapid development. As an external source of knowledge,
KGs can be utilized to supplement the insufficient knowledge in
LLMs[26]. In this paper, we roughly categorize KGs into standalone
approaches[8, 30, 63] and LLM-related approaches[2, 4, 33]. Before

the emergence of LLMs, integrating knowledge representation into
the training process using standalone KGs methods often necessi-
tated careful design of model architectures and training methods.
For example, Azzam et al.[3] presentedWiseKGs, the first work that
combines both client-side and server-side query optimization tech-
niques in a truly dynamic fashion. Later on, Liu et al.[41] inspired by
the progress of self-supervised learning and presented SelfKGs with
efficient strategies to optimize this objective for aligning entities
without label supervision.

After the emergence of LLMs, utilizing KGs to enhance LLMs
has become a hot topic [26]. For example, Baek et al.[4] proposed
to augment the knowledge directly in the input of LLMs with KGs.
Meanwhile, Agarwal et al. [2] proposed KITLM, a novel knowledge
base integration approach into language model through relevant in-
formation infusion. Recently, Jiang et al.[33] inspired by the studies
on tool augmentation for LLMs and developed an Iterative Reading-
then-Reasoning (IRR) framework to solve question answering tasks
based on structured data, called StructGPT.

Differing from the methods mentioned above, we integrate KGs
into multiple LLMs within a multi-modal environment, employing
a collaborative approach among these models to tackle open-set
object recognition tasks.

3 PROPOSED METHOD
To enhance the precision of open-set object recognition tasks, the
core is to diminish spurious-discriminative features. Ideally, all
features should be clear and explicit, capable of distinguishing all
open-set classes. Our goal is to optimize algorithms to progressively
approach this scenario. Motivated by the excellent work in LMC[49],
our work extends upon its foundation and addresses certain limi-
tations. Specifically, we reconstruct a collaborative framework for
LLMs, addressing the illusion problem inherent in ChatGPT. Ini-
tially, we introduce KGs as an external knowledge source to rectify
and augment the text descriptions generated by ChatGPT. Subse-
quently, we devise an image-text fusion strategy. In a multi-modal
setting, leveraging relevant images generated during the LMC itera-
tion process as references, we further optimize the text descriptions
generated by ChatGPT. The workflow of our work is illustrated in
Figure 2. Initially, a large number of virtual open-set classes are
generated by LLMs based on a portion of existing closed-set classes.
These virtual open-set classes undergo optimization through self-
checking strategies employed by us. Subsequently, the closed-set
classes and virtual open-set classes are jointly fed into the LLMs’
collaborative architecture for iterative optimization, resulting in
the generation of textual descriptions and images. Our novel de-
sign enhances the efficiency and robustness of the iterative process.
Finally, the given image is tested to determine whether it belongs
to an open-set class, yielding the ultimate outcome. Next, we will
discuss each key detail point in turn.

3.1 LLMs Collaboration in Cyclic
To enhance the accuracy of open-set object recognition, the core
lies in reducing spurious-discriminative features. To achieve this,
we leverage the powerful generative capability of LLMs to produce
more discriminative features. Inspired by chain-of-thought [57],
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Figure 2: The overall flowchart of our proposed method.
Through collaborative iteration in a cyclic manner, LLMs
can continuously optimize internal knowledge, thereby en-
hancing the accuracy of open-set object recognition.

we set up a series of questions to facilitate LLMs in better under-
standing our requirements and generating the answers we desire.
For a given closed-set class, we typically pose three questions to
LLMs. 1) Can you describe the features of the given class? 2) What
other classes exhibit similar features? 3) Please provide distinctive
features that can differentiate above classes. Through these three
questions, LLMs can provide the desired answers. For example, our
dialogue with ChatGPT can be described as follows. User: Given
a list of classes [ladybug, dragonfly, goose,...], can you describe
the visual features of each class in the list? ChatGPT: Sure. Lady-
bug is a small, round beetle that is typically red or orange with
black spots. Its body is covered in a hard shiny shell. Dragonfly is ...
User:What are the discriminative visual features of class ladybug
compared with other classes in the list? ChatGPT: Compared with
other classes in the list, ladybugs have several discriminate visual
features including: color(ladybugs are typically red or orange with
black spots); shape(ladybugs have a round shape);... User: Can you
list other classes that also share these discriminative visual features?
ChatGPT: Sure, here are some other classes that share some of the
discriminative visual features of ladybugs. Tortoise beetle: a type of
beetle that has a similar body shape and hard, shiny shell to ladybugs,
and some species have similar bright colors and markings. Ladybird
spider: a species of spider that has a similar coloration and spotted
pattern to ladybugs.

To enhance the robustness of ChatGPT against spurious dis-
criminative features, we endeavor to create an exhaustive virtual
open-set class catalog. Our goal is to empower ChatGPT with self-
reflective capabilities, encouraging it to reassess whether any over-
looked spurious characteristics exist. Specifically, for each closed-
set category, post the initial query sequence, we augment the first
question’s class list with the virtually generated open-set classes.
This expansion prompts ChatGPT to revisit the three questions,
effectively filtering out already-identified spurious features and
prompting exploration of undetected ones. The self-checking loop
iterates until ChatGPT ceases to suggest novel virtual open-set
classes or a predefined maximum cycle threshold is reached. Be-
yond this, inspired by prior work[45] acknowledging the diversity

of real-world classes, we mimic virtual open-set instances that ex-
hibit lower similarity to closed-set samples, thereby sharing fewer
spurious discriminative traits. To accomplish this, we inquire of
ChatGPT: Considering the given class list, can you suggest classes
that are distinct from these? By integrating these simulated open-set
classes into the closed-set inventory, the original discriminatory
power of spurious features among closed-set classes diminishes in
the expanded context.

After obtaining virtual open-set classes, we can utilize these
classes to prompt LLMs to generate corresponding images, thereby
complementing textual knowledge and obtaining more accurate
recognition results. In particular, let the closed-set classes be de-
noted as 𝑍𝑐 and the virtual open-set classes as 𝑍𝑐 . For each class
𝑧 ∈ 𝑍𝑐 ∪ 𝑍𝑣𝑜 , we prompt a text-to-image model (i.e., DALL-E) to
generate corresponding images based on their generated textual
descriptions. This process can be described as follows:

𝑖𝑘𝑧 = 𝑇 2𝐼 (𝑑𝑘𝑧 ), 𝑘 ∈ [1, 𝐾] (1)

Where, 𝐾 denotes the number of generated textual descriptions for
each class. 𝑑𝑘𝑧 represents the 𝑘-th textual description generated by
LLMs for each class 𝑧. 𝑖𝑘𝑧 represents the image generated by the
text-to-image model from 𝑑𝑘𝑧 .

However, images generated by LLMs may also be inaccurate.
If inaccurate or erroneous images are used as references, it could
lead to a decrease in the accuracy of open-set object recognition.
To tackle the issue of inaccurate image representations for their
intended classes, we designate these images as less precise and aim
to automate their detection, subsequent description refinement,
and image regeneration. Drawing inspiration from human learn-
ing, which incorporates feedback for enhanced understanding, we
explore the potential for LLMs to refine their outputs based on
peer feedback. Specifically, we introduce a cyclic cross-evaluation
framework, leveraging CLIP as the feedback generator to inform
ChatGPT of the less precise images. This enables ChatGPT to refine
the descriptions associated with these images, leveraging CLIP’s
insights. Therefore, we employ another LLM as an evaluator to
assess the quality of generated images. If the image quality meets
the criteria, it is retained. Otherwise, the image is discarded, and
the next generation process begins anew. Specifically, let 𝐷 denote
the textual descriptions during the generation process. For each
𝑖𝑘𝑧 , we utilize the multi-modal contrastive model CLIP to evaluate
the quality of the generated image. The evaluation process can be
represented by the following formula:

𝑝𝑎𝑠𝑠 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐶𝐿𝐼𝑃𝑣𝑖𝑠 (𝑖𝑘𝑧 ) (𝐶𝐿𝐼𝑃𝑡𝑒𝑥𝑡 (𝐷))𝑇 ) (2)

Where, 𝐶𝐿𝐼𝑃𝑣𝑖𝑠 (·) represents the visual operation of CLIP model,
and 𝐶𝐿𝐼𝑃𝑡𝑒𝑥𝑡 (·) represents the text operation of CLIP model.

By iteratively executing the aforementioned three steps, we har-
ness CLIP’s capability to provide targeted feedback to ChatGPT,
guiding its description refinement towards our desired outcome.
This refinement process results in the generation of images that
more accurately represent their respective classes. The iteration
concludes when all images align closely with their intended classes
or a preset maximum cycle limit is reached. Notably, upon reaching
this limit, any remaining images deemed inaccurate are discarded.
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Figure 3: Diagram illustrating our proposed text enhance
module. The input text is sourced from generative language
models, while the input images are derived from images
generated during the iteration process. TIKF represents our
proposed Text-Image Knowledge Fusion strategy. The output
consists of two parts: one part comprises textual descriptions
used for image generation, and the other part consists of
probability values used for subsequent evaluation.

3.2 Textual Enhance Module
While the collaboration of LLMs has shown astonishing effective-
ness, LLMs also possess their own limitations. For instance, the
common issue of hallucinations in generative dialogue models such
as ChatGPT. The occurrence of hallucinations during the iteration
process constitutes a critical challenge, as it can significantly impede
the results of open-set target recognition. For generative language
models operating solely in a unimodal fashion, their capability is in-
herently constrained. Some responses may appear logically correct
at first glance, yet upon further examination, it becomes apparent
contradicts common knowledge. To address this issue, we draw
inspiration from the operational mode of collaborative LLMs and
propose a Text-Image multi-modal Knowledge Fusion(TIKF) strat-
egy. By using images as references, we rectify erroneous responses
from generative language models. Furthermore, as generative lan-
guage models are internally pre-trained, their knowledge base is
fixed. Moreover, human language exhibits many instances of poly-
semy, which LLMs struggle to disambiguate. To mitigate this issue,
we introduce a KGs as an external knowledge source, compensating
for this limitation of LLMs. The specific process is illustrated in
Figure 3.

Our method takes textual description 𝐷 and image 𝑖𝑘𝑧 as input.
The image 𝑖𝑘𝑧 is first encoded by a Vision Transformer(ViT) to
obtain the image vector 𝑖𝑣𝑘𝑧 . Due to the presence of ambiguity
and incomplete content in 𝐷 , we introduce a KGs to rectify and
complement it.

The KGs is a structured semantic knowledge base that depicts
concepts, entities, and their relationships in the objective world
through a graphical representation. It transforms the vast informa-
tion on the internet into a form that more closely aligns with human
cognition, enabling enhanced capabilities for organizing, managing,
and comprehending this deluge of data. While Wikipedia can be
considered as an illustrative manifestation of a KG, it transcends
mere visualization by leveraging semantic technologies to compre-
hend and represent knowledge, thereby supporting semantic search

and reasoning[53]. Moreover, its structured storage and represen-
tation of knowledge facilitate efficient processing and analysis by
computers. With the advent of web technologies and artificial in-
telligence, the evolution of Wikipedia has accelerated significantly.
The concepts and technologies underlying it have continually pro-
gressed from semantic networks, ontologies, linked data, to the
current KG paradigm. Typically, Wikipedia comprises entities, at-
tributes, and relations. Entities correspond to semantic instances,
such as "Yao Ming" or "China," constituting the fundamental units
of the graph. Attributes describe the characteristics of an entity
class, for instance, "height" being an attribute of Yao Ming with a
value of "229 centimeters." Relations, on the other hand, articulate
the connections between semantic instances, linking entities like
"Yao Ming" and "China" through the relation "nationality."

In this paper, we utilize Wikipedia as an external knowledge
source. The processed textual description is encoded by BERT[12]
into a text vector 𝐷𝑣 . The above process can be represented by the
following formula:

𝑖𝑣𝑘𝑧 = 𝑉𝑖𝑇 (𝑖𝑘𝑧 ), 𝑘 ∈ [1, 𝐾] (3)

𝐷𝑣 = 𝐵𝐸𝑅𝑇 (𝑊𝑖𝑘𝑖 (𝐷)) (4)
Where𝑉𝑖𝑇 (·) denotes the encoding operation using the ViT model,
𝑊𝑖𝑘𝑖 (·) represents the onlinematching and correction usingWikipedia,
and 𝐵𝐸𝑅𝑇 (·) indicates the encoding operation using the BERT
model.

Afterward, we propose a strategy to integrate image and text
knowledge. By appropriately integrating 𝑖𝑣𝑘𝑧 and 𝐷𝑣 , and jointly
inputting them into the classifier, more accurate classification re-
sults can be obtained. Since the dimension of 𝑖𝑣𝑘𝑧 is much higher
than that of 𝐷𝑣 , we performed pooling and dimension reduction on
𝑖𝑣𝑘𝑧 before fusion to better match 𝐷𝑣 . Additionally, inspired by the
advanced multi-modal LLaVA[39], we utilized it to simultaneously
accept image and text inputs. This approach allows for obtaining
more detailed and accurate textual descriptions 𝐷𝑙 from another
perspective, which are directly used for generating high-quality
images. The computational process is illustrated as follows:

𝐷𝑙 = 𝐿𝐿𝑎𝑉𝐴(𝐷, 𝑖𝑘𝑧 ), 𝑘 ∈ [1, 𝐾] (5)

Here, 𝐿𝐿𝑎𝑉𝐴(·, ·) represents the utilization of the LLaVA model for
processing input data.

3.3 Text-Image Knowledge Fusion
To better leverage the rich semantic knowledge contained within
images for aiding in text correction and completion, we propose
TIKF, where image vectors and text vectors are appropriately in-
tegrated to jointly determine the category logits of the object, as
illustrated in Figure 4.

We continue the discussion from the previous subsection. The
input for the TIKF strategy consists of image embeddings 𝑖𝑣𝑘𝑧 and
Wiki entity embeddings 𝐷𝑣 . Firstly, we perform a linear operation
on the input 𝑖𝑣𝑘𝑧 to reweight the input image vectors and text vectors,
enhancing the integration of their information. Subsequently, we
perform averaging on 𝐷𝑣 to mitigate differences between Wiki
entity lengths, facilitating better fusion with the image vectors.
This process can be represented by the following formula:

𝑖𝑣𝑙𝑘𝑧 = 𝐿𝑁 (𝑖𝑣𝑘𝑧 ), 𝑘 ∈ [1, 𝐾] (6)
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Figure 4: Figure illustrating the TIKF strategy. We input im-
age embeddings andWiki entity embeddings, which undergo
transformer blocks and are subjected to operations such as
linear transformation, averaging, and reweighting, to accom-
plish text-image knowledge fusion.

𝐷𝑣 = 𝐴𝑉𝐺 (𝐷𝑣) (7)

Where 𝑖𝑣𝑙𝑘𝑧 represents the data obtained after linear calculation of
𝑖𝑣𝑘𝑧 , and𝐷𝑣 denotes the result after averaging𝐷𝑣 . 𝐿𝑁 (·) denotes the
linear operation, and 𝐴𝑉𝐺 (·) represents the averaging operation.

To retain details and multiscale features, we opt to linearize
and average only a portion of 𝑖𝑣𝑘𝑧 and 𝐷𝑣 , leaving the other part
untreated. It is noteworthy that the data after linearization needs
further processing with TransformerBlock, whereas only the data
untreated by averaging requires subsequent TransformerBlock pro-
cessing. Finally, we perform element-wise addition between 𝐷𝑣 and
𝐷𝑣 , and reweight them together with 𝑖𝑣𝑘𝑧 and 𝑖𝑣𝑙𝑘𝑧 to obtain the
final result 𝐷 𝑓 . This process can be described as follows:

𝐷 𝑓 = 𝑅𝑊𝑡 (𝑖𝑣𝑘𝑧 , 𝑖𝑣𝑙𝑘𝑧 , 𝐷𝑣 ⊕ 𝐷𝑣), 𝑘 ∈ [1, 𝐾] (8)

Where 𝑅𝑊𝑡 (·) represents the operation of reweighting, and ⊕ de-
notes element-wise addition.

3.4 Inference
After collaborative efforts from LLMs, we obtained a plethora of
high-quality textual descriptions and images. We have augmented
the closed-set class list with virtual open-set classes and produced a
diverse array of images for each class in this expanded list. This sec-
tion outlines how our framework leverages this expanded dataset
and generated images to diminish the discriminative power of
spurious features during inference. Notably, our framework op-
erates without prior training, enabling seamless integration into
real-world applications.

Inspired by the image-text contrastive model CLIP[1] and the
image-image contrastive model DINO[61], we employ these two
models jointly to accomplish the open-set object recognition task.
To ensure the efficiency of LLMs during inference, we pre-store
the image and text features required by CLIP and DINO before
conducting inference. After completing these steps, we can proceed
with the inference task, which can be divided into three parts.
The first part involves obtaining an assessment probability using
the CLIP model. The second part entails obtaining a probability
value using the DINO model. The third part involves weighting and
summing these two probability values to obtain the final open-set
object recognition result. We will now elaborate on each of these
three parts.

First, given a test image 𝐼𝑡 , we input it into the image encoder
of CLIP. Then, we input the pre-stored text classes 𝑍𝑐 and 𝑍𝑣𝑜 ,
which are summed element-wise, into the text encoder of CLIP.
This process yields the prediction results of the CLIP model 𝑃𝑐 :

𝑃𝑐 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐶𝐿𝐼𝑃𝑣𝑖𝑠 (𝐼𝑡 ) (𝐶𝐿𝐼𝑃𝑡𝑒𝑥𝑡 ((𝑍𝑐 ⊕ 𝑍𝑣𝑜 )))𝑇 ) (9)

Similarly, we utilize the two image encoders of DINO to respec-
tively receive the test image 𝐼𝑡 and the pre-stored generated image
𝑖𝑘𝑧 . After averaging and softmaxing, we obtain the prediction prob-
ability values 𝑃𝑑 of DINO:

𝑃𝑑 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴𝑉𝐺 (𝐷𝐼𝑁𝑂𝑣𝑖𝑠 (𝐼𝑡 ) (𝐷𝐼𝑁𝑂𝑣𝑖𝑠 (𝑖𝑘𝑧 ))𝑇 )), 𝑘 ∈ [1, 𝐾]
(10)

Where 𝐷𝐼𝑁𝑂𝑣𝑖𝑠 (·) represents the visual operation of the DINO
model.

Finally, we weight and sum the two probabilities 𝑃𝑐 and 𝑃𝑑 , then
calculate the maximum probability to obtain the final open-set
object recognition result 𝑃𝑎𝑙𝑙 :

𝑃𝑎𝑙𝑙 = max
𝑧∈𝑍𝑐

(𝑚𝑃𝑐 + (1 −𝑚)𝑃𝑑 ) (11)

4 EXPERIMENTS
4.1 Dataset and Metrics
Weevaluate ourmethod on three datasets: CIFAR10[36], CIFAR10+[36]
and TinyImageNet [19].

The CIFAR10 dataset is a classic dataset used for image classifi-
cation tasks. It consists of color images categorized into 10 classes,
each containing 6000 images sized 32 × 32 pixels. These classes
include airplanes, automobiles, birds, cats, deer, dogs, frogs, horses,
ships, and trucks. The images in CIFAR10 are divided into 50,000
training images and 10,000 test images. This dataset is widely uti-
lized for evaluating the performance of image classification algo-
rithms, particularly in research within the field of computer vision.
In this paper, following LMC [49], we randomly select 6 closed-set
classes and 4 open-set classes for evaluation. Similarly, following
LMC, we expand the CIFAR10 dataset by randomly selecting addi-
tional 10 classes from the full CIFAR set, incorporating them into
CIFAR10 to form CIFAR10+, in order to better evaluate our method.

TinyImageNet is a downscaled version of the ImageNet dataset
designed for image related tasks. It serves as a subset of ImageNet,
comprising approximately 100,000 training images, about 10,000
validation images, and roughly 10,000 test images. Each image has a
size of 64 × 64 pixels, and the dataset consists of 200 categories. For
each category, there are 500 training images, 50 validation images,
and 50 test images. TinyImageNet aims to provide a relatively small
yet challenging dataset suitable for rapid prototyping and model
validation. In this paper, following [49], we randomly select 20
closed-set classes and 180 open-set classes for evaluation.

In this paper, we follow the approach of [49], employing AUROC
and OSCR[20] as the evaluation metrics for our method.

The AUROC, an acronym for Area Under the Receiver Operat-
ing Characteristic curve, represents the area beneath the Receiver
Operating Characteristic (ROC) curve, serving as a pivotal metric
for evaluating classifier performance. This metric encapsulates the
classifier’s efficacy by quantifying the area between the ROC curve
and the coordinate axes. Fundamentally, the AUROC signifies the
expectation that a randomly drawn positive instance (true positive)
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will rank higher than a randomly drawn negative instance (true
negative). As a value ranging from 0 to 1, an AUROC score ap-
proaching 1 indicates a classifier’s exceptional ability to distinguish
between positive and negative samples. In the realm of machine
learning and statistical classification, AUROC is widely employed
for assessing model performance, particularly adept at handling
imbalanced datasets due to its invariance to the ratio of positive to
negative samples.

In accordance with the definition provided in[20], we utilize
OSCR (Open-Set Classification Rate curve, assuming this as a hypo-
thetical metric for the sake of the context) as an evaluation metric
to test the performance of our method.

4.2 Implementation Details
In this paper, we collaborate multiple LLM in a plug-and-play man-
ner without the necessity for additional training processes. During
the feature optimization phase, we set the maximum self-check
iterations for LLMs at 3. In the process of generating textual de-
scriptions, we rank the optimized textual descriptions by accuracy
from high to low. For each category, we select the top 10 descrip-
tions. To prevent the algorithm from falling into an infinite loop,
we set the maximum number of iterations for feature optimiza-
tion to 3 times. For the CLIP model, we employ ViT-B/32 as the
image encoder and a general transformer structure as the text en-
coder. For the DINO model, we use ViT-B/14 as the image encoder.
Additionally, we set𝑚 to 0.6 for the calculation of 𝑃𝑎𝑙𝑙 .

The computer hardware configuration we utilized includes a
13th Gen Intel(R) Core(TM) i5-13490F 2.50 GHz CPU, 32.0 GB RAM,
and one NVIDIA RTX 3090ti GPU. Our code execution environment
comprises Python 3.9, PyTorch 2.0.0, and CUDA 11.7.

4.3 Comparison with Other Methods
To demonstrate the efficacy of our method, we specifically chose to
compare it with the leading algorithms published in core articles/-
papers in recent years. The articles/papers include ICCV, ECCV,
CVPR, TPAMI, AAAI, ICLR, and NeurIPS. Moreover, all compari-
son methods except [49] require additional training. Our proposed
method do not require any extra training processes. This can save
a significant amount of computational resources, and our code can
easily be run on general computing devices. As evidenced in Table
1 and Table 2, our method outperforms all the compared methods,
achieving the best performance.

Compared to previous methods, our approach has achieved a
new state-of-the-art performance. Furthermore, in terms of error
fluctuations, our method exhibits remarkable stability, indicating
that our proposed open-set object recognition method is highly
robust and largely immune to sample variations. We attribute this
primarily to the capability of LLMs to compensate for missing sam-
ples and generate superior samples to replace inferior ones, thereby
ensuring the quality of samples and consequently, the performance
of the algorithm. In comparison to[49], our approach surpasses it
in terms of average performance and significantly outperforms it
in error fluctuations. We believe this is due to our utilization of
knowledge graphs to mitigate the hallucination issues inherent in
LLM, a method that holds significant importance for enhancing the
output quality of LLMs.

It is noteworthy that our method excels in error reduction. Com-
pared to other methods, our approach has successfully reduced the
error by a factor of 10 to 100. We attribute this phenomenon to
the error correction and completion capabilities enabled by multi
modalities and external Knowledge Graphs, which effectively rec-
tify the erroneous outputs of LLMs, resulting in stable and correct
outputs.

4.4 Ablation Studies
In this subsection, we progressively analyze the role of each module.
Following the methodology in [49], we use AUROC as the evalua-
tion metric. Specifically, the dataset employed is TinyImageNet.

First, we analyzed the respective roles of text classes and images
in open-set object detection during the inference stage. The text
classes originate from initial classes and virtual open-set classes
generated after self-checking strategies by LLMs. One part of the
images is test images, while the other part comes from images
generated during the iterative cycling process. Our test code en-
vironment excludes these two parts separately and yields varying
results, as shown in Table 3. Among them, ’w/o Text Classes’ indi-
cates that in our ablation study, we did not include text classes for
inference, and only images were involved throughout the inference
step. Under this scenario, the results of open-set object recognition
lacked references from text classes, thus leading to a decrease in
recognition accuracy. Moreover, ’w/o images’ signifies that we did
not incorporate relevant images for inference in our ablation ex-
periment, and only text classes participated in the entire inference
process. The absence of relevant images as references also limits
the performance of the overall recognition algorithm. To make
the results of the ablation study clearer, we specifically included
the method from [49] for comparison, which further demonstrates
that our method has made improvements and enhancements to it,
indeed playing a positive role.

Next, we explore the roles played by different modules in the
overall process. In this discussion, wewill address the overall impact
of the four components: self-checking, cycling generation, text-
enhancing, and the Knowledge Graphs (KGs) on the results.

The results of the ablation studies among the various modules
are shown in Table 4. We employed a stepwise incremental strategy
by progressively adding the test modules. Overall, as the number
of modules increases, the results of open-set object recognition
become more precise, indicating that each module contributes pos-
itively to the efficacy of the entire method. Specifically, we found
that adding the Knowledge Graphs (KGs) module alone results in a
better improvement than adding the text-enhancing module alone.
We analyze this situation might due to the knowledge relied upon
by the text-enhancing module is primarily derived from within
LLMs themselves, which inherently has certain limitations. In con-
trast, the Knowledge Graphs is different, which benefits from the
external Internet and can be updated in real time. Hence, it can
supplement latest knowledge that LLMs could not reach. This also
proves that the Knowledge Graphs becomes a powerful tool to
compensate for the knowledge base of LLMs.
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Table 1: A comparison of our method with the most optimal algorithms in recent years in terms of the AUROC metric, wherein
the best indicators are highlighted in bold for emphasis.

Methods Source CIFAR10 CIFAR10+ TinyImageNet
Neal et al.[46] ECCV 2018 69.9±3.8 83.8±- 58.6±-
Oza et al.[47] CVPR 2019 89.5±- 95.5±- 74.8±-
Chen et al.[15] ECCV 2020 90.1±- 97.6±- 80.9±-
Zhang et al.[60] ECCV 2020 95.0±- 96.2±- 79.3±-
Guo et al.[28] ICCV 2021 83.5±2.3 88.8±1.9 71.5±1.8
Chen et al.[14] TPAMI 2022 90.1±0.5 96.5±0.6 76.2±0.5
Chen et al.2[14] TPAMI 2022 91.0±0.7 97.1±0.3 78.2±1.3
Lu et al.[43] AAAI 2022 95.1±- 97.8±- 83.1±-

Esmaeilpour et al.[22] AAAI 2022 93.0±1.7 97.8±0.6 84.6±1.0
Vaze et al.[55] ICLR 2022 93.6±- 97.9±- 83.0±-
Moon et al.[45] ECCV 2022 85.0±2.2 92.0±1.1 73.1±1.5
Cho et al.[18] ECCV 2022 94.8±- 96.1±- 78.5±-
Liu et al.[42] TPAMI 2023 85.7±1.3 89.1±1.4 76.4±1.7
Liu et al.2[42] TPAMI 2023 88.5±1.3 91.8±0.8 74.6±0.8
Huang et al.[29] TPAMI 2023 91.3±- 96.3±- 82.3±-
Huang et al.2[29] TPAMI 2023 91.5±- 96.0±- 81.9±-
Qu et al.[49] NeurIPS 2023 96.6±0.3 98.9±0.7 86.7±1.4

Ours 98.4±0.02 99.5±0.002 89.2±0.03

Table 2: A comparison of our method with the best algorithms from recent years based on the OSCR metric, with the highest
indicators prominently displayed in bold.

Methods Source CIFAR10 CIFAR10+ TinyImageNet
Yang et al.[58] CVPR 2018 84.3±1.7 91.0±1.7 59.3±5.3
Chen et al.[15] ECCV 2020 85.2±1.4 91.8±1.2 53.2±4.6
Chen et al.[14] TPAMI 2022 86.6±1.4 93.5±0.8 62.3±3.3
Chen et al.2[14] TPAMI 2022 87.9±1.5 94.7±0.7 65.9±3.8
Liu et al.[42] TPAMI 2023 84.8±1.4 92.5±1.0 64.3±3.2
Liu et al.2[42] TPAMI 2023 86.9±1.5 93.2±0.3 59.2±2.1
Qu et al.[49] NeurIPS 2023 93.6±1.5 96.8±0.7 80.6±3.4

Ours 95.9±0.02 96.9±0.008 82.9±0.05

Table 3: Ablation Study of Alignment Strategies.

Strategy AUROC
Images 84.4

Text Classes 82.1
Qu et al.[49] 86.7

Ours 89.2

Table 4: Ablation Study of Different Modules.

Module AUROC
self-checking 85.6

cycling 85.9
self-checking + cycling 86.7

self-checking + cycling + text-enhancing 87.6
self-checking + cycling + KGs 88.5

Ours 89.2

4.5 Visualization
In this subsection, we provide specific examples regarding text-
enhancement and image optimization, more vividly illustrating
the effectiveness and superiority of our method. Details shown in
Figure 5.

From the visual examples, it can be clearly seen that the enhanced
text descriptions through multi-modal and Knowledge Graphs tech-
niques are more specific and contain more detailed information,
such as the appearance and location of objects in the images. Ad-
ditionally, the enhanced text descriptions include some inferential
contents, which greatly aid in the deep understanding of images
and complex image generation tasks. For the optimized images,
we observe that our proposed method can generate images that
match the text descriptions to a greater extent. This underscores
the superiority of our method.
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Figure 5: Visual schematics for text enhancement and image optimization. Herein, (𝑎) - (𝑒) correspond to the class name, the
image before optimization, the text description before error correction and completion, the image after optimization, and the
text description after error correction and completion, respectively.

5 CONCLUSION
In this paper, we propose an optimized collaboration framework of
LLMs for the task of open-set object recognition, achieving remark-
able results. Addressing the hallucination issue prevalent in textual
LLMs, we introduce a solution that leverages multi-modalities and
Knowledge Graphs. More specifically, we devised an integrated
method that combines textual and image knowledge. In the future,
as LLMs evolve, our method is expected to demonstrate even better
performance.
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