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ABSTRACT
Relation extraction from scientific literature to align with a domain

ontology is a well-known challenge in natural language process-

ing, particularly critical in precision medicine. The advent of large

languagemodels (LLMs) has enabled the development of new and ef-

fective approaches to this problem. However, the extracted relations

can be prone to problems (e.g., hallucination) that must be mini-

mized. In this paper, we present the initial development of SPIREX,

an extension of the SPIRES-based system designed to extract triples

from scientific literature involving RNA molecules. Our system

leverages schema constraints in the formulation of LLM prompts

and utilizes graph machine learning on our RNA-based knowledge

graph, RNA-KG, to assess the plausibility of the extracted triples.

RNA-KG comprises more than 12.5M edges representing various

types of relationships involving RNA molecules.
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1 INTRODUCTION
Ribonucleic acid (RNA) is essential in the central dogma of molec-

ular biology, functioning as the intermediary between DNA and

proteins, the fundamental building blocks of life. Beyond its tradi-

tional role in protein synthesis, RNA is involved in various cellular

processes, including gene regulation and catalysis, emphasizing its

critical importance in understanding the complexities of biologi-

cal systems. RNA-KG [8] is an ontology-based knowledge graph

(KG) that represents both coding and non-coding RNA molecules

and their interactions with other biomolecular data, pathways, ab-

normal phenotypes, and diseases. This KG supports the study and

discovery of RNA’s biological roles. RNA-KG includes around 12.5M

edges derived from over 60 public data sources, enabling the explo-

ration of RNA molecules and the development of innovative graph

algorithms for knowledge discovery in data science.

Manually ingesting triples into a KG by expert curators is a time-

consuming and costly process. Thus, tools are strongly needed to

support the domain experts in extracting biological entities and

their relationships from plain texts by exploiting Relation Extraction
(RE) approaches [11] to identify triples containing the entity men-

tions, their relationship, and then grounding them according to the

classes and relationships made available by domain ontologies. Stan-

dard supervised RE techniques involve training models according

to task-oriented corpora that are not always so easy to identify in

some contexts, like the biomedical domain. Recent general-purpose

large language models (LLMs) [3], like GPT-3, appear to obtain very

good performances by applying prompt engineering techniques

that determine reliable examples of the task to be carried out [38].

However, these techniques can produce incorrect statements due

to hallucinations [13, 22] that are not acceptable in sensitive areas

like precision medicine.

To face these issues, the integration of LLMswith KGs and knowl-

edge bases appears very promising. Indeed, they provide a struc-

tured representation of the entities and relationships available in a

given domain and offer rich contextual information that the LLM
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can exploit in the extraction process. The utility of this integration

has been recently proved through the SPIRES (Structured Prompt In-

terrogation and Recursive Extraction of Semantics) system [6] that

exploits a knowledge schema (expressed in terms of LinkML [28])

to specify the context and the examples of interesting links. This

has a positive impact on the performances of LLMs by defining

more effective interacting prompts. Additionally, SPIRES allows the

grounding of concepts in a variety of bio-ontologies, such as Open

Bio Ontology (OBO) Foundry ontologies [21].

In this paper, we enhance the integration of SPIRES with KGs

by considering the latter for the semi-automatic validation of the

statements extracted from scientific documents. Indeed, when the

KG already contains many facts, it can be exploited to evaluate

the plausibility of the extracted triples according to the current

knowledge of the domain. This is an important feature to reduce the

manual efforts of the domain curators in evaluating and accepting

the automatically extracted facts.

To reach this goal, we introduce SPIREX, a system designed

to extract reliable triples from scientific papers by exploiting: 𝑖)
the SPIRES functionalities for extracting triples involving RNA

interactions; and 𝑖𝑖) RNA-KG for assessing the plausibility of the

extracted triples because of its wide coverage of the interactions

involving RNAmolecules. Initial experimental results on amanually

curated testbed of 100 scientific texts are promising.

The main contributions of this paper are: 𝑖) the use of RNA-KG
schema in combination with SPIRES for an effective extraction of

triples involving RNA molecules from scientific documents; 𝑖𝑖) the
use of heterogeneous graph representation techniques for represent-

ing RNA-KG in the latent space and their adoption for evaluating

the plausibility of the extracted triples; 𝑖𝑖𝑖) a wide (even if pre-

liminary) evaluation of SPIREX for extracting meaningful triples

from RNA specific documents (the extracted triples are validated

according to the ground truth stored in RNA-KG). By exploiting the

proposed notion of plausibility we can identify triples that can be

accepted without expert curators’ validation and triples for which

a second check is strictly needed.

In the reminder, Section 2 discusses related work in relation

extraction and introduces the characteristics of RNA-KG, SPIRES,

and link prediction approaches in KGs. Then, Section 3 details

the characteristics of SPIREX. Section 4 reports our experimental

results. Section 5 contains our conclusions.

2 RELATEDWORK
A knowledge graph is an abstract representation of the knowledge

of a given domain represented in terms of the individuals existing

in the domain and their relations. More formally, a 𝐾𝐺 is a 4-tuple

(𝑁, 𝐸, 𝑁𝑇 , 𝐸𝑇 ), where 𝑁 is the set of typed nodes representing real-

world entities (the available types are contained in 𝑁𝑇 ). The set 𝐸

represents the typed edges between nodes, i.e. 𝐸 ⊆ 𝑁 × 𝐸𝑇 × 𝑁 ,

where 𝐸𝑇 represents the predicate that can exist among entities

in the considered domain. A triple (𝑠, 𝑝, 𝑜) ∈ 𝐸 represents the

existence of the relationship/predicate 𝑝 between a subject 𝑠 and

an object 𝑜 . A 𝐾𝐺 is ontology-based when the type of nodes and

edges that can contain is compliant with the constraints imposed

by an Ontology O and the structural relationships available in O
are included in 𝐾𝐺 . The RE problem from a text 𝑇 according to an

ontology-based knowledge graph 𝐾𝐺 consists of: 𝑖) the extraction
of the triples/facts (𝑒𝑖1 , 𝑟𝑖 , 𝑒𝑖2 ), where 𝑒𝑖1 and 𝑒𝑖2 are entity mentions

and 𝑟𝑖 is the predicate representing the relationships between them

identified in 𝑇 ; and, 𝑖𝑖) the grounding of these mentions according

to the classes and predicates available in the Ontology O to provide

an unambiguous representation of the facts. In the remainder of the

section, we provide a description of RNA-KG, an ontology-based

KG representing the interactions involving coding and non-coding

RNA molecules, different approaches for relation extraction, and

discuss link prediction models that can be exploited for evaluating

the plausibility of triples (𝑠, 𝑝, 𝑜) in a KG.

RNA-KG. It is the first KG encompassing biological knowledge

about RNAs gathered from more than 60 public databases, inte-

grating functional relationships with genes, proteins, chemicals,

and ontologically grounded biomedical concepts. The current re-

lease of RNA-KG has a single component containing around 670K

nodes and 12.5M edges and can be queried via SPARQL endpoint

at https://RNA-KG.anacleto.di.unimi.it. Nodes are usually mapped

to reference biomedical vocabularies and ontologies such as NCBI

Gene Entrez identifiers for uniquely identifying genes and many

kinds of non-coding RNAs (ncRNAs), Human Phenotype Ontology

(HPO) for phenotypes, Monarch merged disease ontology (Mondo)

for diseases, and Gene Ontology (GO) for annotating ncRNAs. More-

over, all the possible interactions are represented through the Rela-

tion Ontology (RO). This ensures common semantics for the differ-

ent relationships that are extracted from the sources.

Figure 1 shows the t-SNE representation of an embedding of the

nodes/edges in RNA-KG, obtained by using the GRAPE implemen-

tation of node2Vec with CBOW [16], with walk length equal to 5.

Figure 1a shows how the embedding of the node type is able to ef-

fectively identify the similarities among the nodes of the same type,

thus capturing their function in the network. On the other hand,

Figure 1b depicts the edge embedding, which captures the similarity

between edges with the only exception of the interacts with and
regulates activity of relations which seem to overlap several

other edge types. This fact is not so surprising considering that the

interacts with predicate is used to denote a generic relation.

Figure 2 shows an excerpt of the kind of relationships that are

available in RNA-KG among the considered entities (a more detailed

representation is reported in the meta-graph presented in [7]) that

will be used in this paper for relation extraction.

Relation extraction. Relation extraction from textual documents

is a crucial task in natural language processing (NLP) that involves

identifying and categorizing semantic relationships between enti-

ties within text [11, 31]. The SoTa techniques in RE have evolved

significantly, driven by advancements in machine learning and the

availability of large annotated corpora.

Traditionally, supervised learning has dominated the field of

RE. These techniques rely on large datasets annotated with en-

tity and relation labels. Models such as Support Vector Machines

(SVMs), Conditional Random Fields (CRFs), and more recently, deep

learning models like Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs), have been used to tag tokens

and predict relationships. The use of pre-trained language mod-

els such as BERT [12] has further improved the accuracy of these

models by leveraging contextual word embeddings. Despite their

2
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(a) Node types embedding. (b) Edge types embedding.

Figure 1: Bidimensional view of RNA-KG embeddings.

success, these models require extensive labeled data, which can be

expensive and time-consuming to produce.

Recent advancements have seen a shift towards sequence-to-

sequence (Seq2Seq) RE models (e.g., [30, 43], and REBEL [20]). In

this paradigm, the problem is reframed as a text generation task

where the input sequence (text) is mapped to an output sequence

(relations). This approach leverages models like Transformer-based

architectures, which have been highly effective in capturing com-

plex dependencies in text. By linearizing relations between entities

as target strings, these models can generate structured information

directly from the input text. This methodology has shown promise

in reducing the need for extensive feature engineering and making

the model more adaptable to different domains.

To mitigate the data annotation bottleneck, distant supervision

methods (e.g., [27, 33, 34]) and semi-supervised learning methods

(e.g., knowItAll [14], TextRunner [2], and OLLIE [25]) have been

explored. Distant supervision techniques automatically generate

training data by aligning text with existing knowledge bases, as-

suming that any sentence containing two entities related in the

knowledge base expresses that relation. However, this approach of-

ten introduces noise due to incorrect assumptions. Semi-supervised

methods, on the other hand, exploit bootstrapping algorithms for

automatically generating labeled data. The advantages of these

approaches are to reduce the efforts in generating labeled data and

make use of freely available unlabelled data. Techniques such as

co-training, self-training, and generative adversarial networks have

been utilized to enhance the robustness and accuracy of RE models

with limited labeled data [31].

All the previously presented approaches require to consider a

specific corpus for training the model to the considered task. How-

ever, the identification of task-specific corpus of big size in the

bio-medical domain is not always feasible and the generation of

the models is a time and money consuming activity. On the other

hand, general purposes LLMs (like GPT3, GPT4, LLamas) trained on

billions of data are increasingly available on the web (encompass-

ing also bio-medical documentation) and expose high capacity of

reasoning. According to recent studies [38], they can be exploited

for the RE problem and can achieve performances comparable with

fully supervised models by exploiting prompts enhanced with a

few shot examples of the task to be carried out. However, these

techniques have shown different limitations, such as generating

incorrect statements due to hallucinations (inaccurate, nonsensical,

or irrelevant output in the given context) [22] and insensitivity to

negations [13], that cannot be tolerated in sensitive domains like

precision medicine. Integrating KGs and ontologies into RE systems

has become increasingly popular in addressing these issues. KGs

provide a structured representation of entities and their relation-

ships, offering rich contextual information that can enhance the

extraction process. Ontology-based systems use predefined schemas

to guide the extraction, ensuring that the identified relationships

adhere to a specified structure. Tools like SPIRES [6] (described in

the next section) leverage such frameworks to improve the preci-

sion and reliability of extracted triples. These systems benefit from

the logical consistency and domain-specific insights encoded in the

ontologies, making them particularly useful for specialized fields

like biomedicine.
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Figure 2: An excerpt of RNA-KG schema.

SPIRES. It is a recently proposed approach to information extrac-

tion that creates and refines prompts to maximize the effectiveness

of general-purpose LLMs by exploiting domain knowledge encap-

sulated through a schema expressed in LinkML [28]. By identifying

and extracting relevant information from an input text, it adopts

zero-shot or few-shot learning to identify and extract relevant enti-

ties and relationships among them, which are then normalized and

grounded through ontologies and vocabularies. SPIRES can be used

across a variety of domains and does not require specific training/-

tuning on a domain. SPIRES adopts an engineering approach for

creating prompts for interacting with an LLM to improve the qual-

ity of the generated responses through the use of domain-specific

schema. In this way, technical challenges for generative AI (e.g.,

constructing comprehensive real-world knowledge and improving

the accuracy of automated responses) can be addressed.

The linkML schema specification contains the relevant classes

of entities and relationships in the specified domain. Classes can

also include attributes (e.g., name, type, and list of synonyms) to

enrich entity description. The LinkML schema is automatically

processed to generate a list of prompts through which SPIRES

interacts with a LLM. Each prompt of the list is submitted to the

LLM for collecting information that is exploited for completing the

following prompt by eventually considering the bio-ontologies (e.g.,

for changing a protein symbol with the corresponding identifier

in an ontology). This recursive refinement process improves the

quality of the information gathered through the LLM.

Link prediction in Knowledge Graphs. Link prediction in KGs

is a critical task that aims to infer missing relationships between

entities, thereby enhancing the graph’s completeness and utility.

Traditional approaches to link prediction rely on heuristic meth-

ods [44], such as common neighbors, preferential attachment, and

the Adamic-Adar index [1], which leverage the structural prop-

erties of the graph. Recent advancements have been increasingly

focused on embedding-based methods [41]. These methods involve

learning low-dimensional representations of entities and relation-

ships by capturing the graph’s semantic and structural information.

In this context three approaches are mostly used: Random-walk

(RW) based models, Graph Neural networks (GNNs), and Relation-

learning neural models [4].

The first kind of models exploits walks across the graph to rely on

the “distributional hypothesis”
1
, firstly exploited in word2vec [26]

to capture the semantic similarity of words, and then extended

to capture the similarity between graph nodes [16]. To adapt the

word2vec strategy on the graph-embedding tasks, RW-based mod-

els collect each node context by running 𝑛 walks from the node

itself and then train a word2vec neural model, to recognize the

context given the node (e.g., Skipgram) or viceversa (e.g., CBOW).

Once trained, the network weights are used as node embeddings.

The most popular and effective RW-based graph embedding tech-

niques are deepWalk [32] and node2vec [16], which differ for the

RW strategy. deepwalk applies a standard first-order RW, whereas

node2vec leverages a second-order RW to bias the walk and pro-

mote exploration or exploitation. Both approaches are scalable and

can work with huge graphs when the GRAPE [5] implementation

is considered. GNNs leverage DNNs to process graphs, using, e.g.,

convolutional filters [23] to direct supervised feature learning in

node-neighborhoods [18]. These models present all the advantages

provided by supervised learning and can eventually integrate at-

tention mechanisms of any sort, from the standard one [37] to

transformers attention [42]; however, their low scalability is still

hampering its application on large graphs (e.g., KGs).

Relation-learning models [4, 40] have been specifically devel-

oped for working with heterogeneous graphs like KGs and gen-

erating a latent space where the different kinds of relationships

are “optimally” represented. These models rely on the use of con-

trastive learning techniques to project entities (subject 𝑠 and object

1
The distributional hypothesis was originally proposed in linguistics [15, 19]. It as-

sumes that “linguistic items with similar distributions have similar meanings”, from

which it follows that words (elements) used and occurring in the same contexts tend

to purport similar meanings [19].
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Figure 3: The SPIREX architecture.

𝑜 nodes) and the predicate 𝑝 between them into low-dimensional

latent spaces that preserve the relationships between entities and

predicates. This is achieved by assigning a score to each (𝑠, 𝑝, 𝑜)
triple, which is maximized for true triples and minimized for “cor-

rupted triples”, i.e. triples not truly existing in the graph. TransE [4]

is probably the most used relation-learning technique due to its

promising results. It computes a score based on the key assumption

that the vector associated with a predicate, p, is a translation of

the subject entity vector, s, to the object entity vector, o. Based
on this assumption the model optimizes a margin-based ranking

loss function enforcing that for each existing triple, the sum of the

embeddings of the subject and predicate are as close as possible

to the embedding of the object: s + p ≈ o. Besides being effective
and efficient in practical scenarios [5], the embedding strategy of

TransE has nice mathematical properties that allow improving over

other relation-learning techniques, e.g., DistMult [40].

3 THE SPIREX SYSTEM
As shown in the architecture in Figure 3, SPIREX is composed of

two modules: the SPIRES module is used for extracting the triples

from scientific abstracts. Then, an embedding of RNA-KG is used

to validate the generated triples and score their level of plausibility.

The meta-graph in Figure 2 has been translated into LinkML

and used by SPIRES as a template to guide the extraction of rela-

tionships from plain text. Figure 4 shows an excerpt of a LinkML

template for extracting protein to disease relationships. In LinkML,

each class can be associated with properties that SPIRES uses to

refine the prompt, thereby guiding the backend general-purpose

LLM to extract more accurate entities. For example, the ProteinDis-
easeRelationship class (Figure 4a) specifies an “annotations” prop-

erty containing examples of potential subject, predicate, and object

for a triple (each LinkML Triple comprises a subject, a predicate,

and an object). In ProteinToDiseaseRelationship, subjects are enti-
ties of type Protein, predicates are entities of type causes or con-
tributes to condition, and objects are entities of type Disease. To
collect ProteinToDiseaseRelationship entities, we encapsulate them

in a TextWithTriples LinkML core class. The predicates “causes

or contributes to condition” are grounded to the corresponding

RO property (RO:0003302) by exploiting the “pattern” and “annota-
tions” properties (Figure 4b). Figure 4c illustrates the representation

of the Protein class in LinkML. Classes can be enhanced by adding

properties such as “synonyms” and “sequence”. The multivalued

specification indicates that the value of “synonyms” is a list of at-

tributes. Protein entities are grounded using the PRotein Ontology

(PRO) whereas diseases are grounded to Mondo and HPO terms.

Starting from our LinkML schema, SPIRES generates a list of

prompts specific to the RNA domain according to which the en-

tities and the relationships contained in a text are extracted by

considering the schema constraints. Moreover, SPIRES adopts bio-

ontologies of our domain (details in [9]) for producing source and

target identifiers according to the RNA-KG identification scheme

and RO predicates.

Example 1. Consider the text related to “protein-causes-disease”:

Alpha-1 antitrypsin (AAT) deficiency is a common cause of liver disease. SER-

PINA1 enzyme inhibitor is also involved in different pulmonary diseases.

By exploiting the LinkML specification in Figure 4c the protein
Alpha-1 antitrypsin (AAT) is identified, whereas the liver and pul-
monary diseases are identified through an analogous LinkML file.
Then, the LLM is asked to populate the class ProteinToDiseaseRela-
tionship (Figure 4a) with triples whose subject is a protein and object
is a disease. Predicates for these triples have to be compliant to the
specified relationship: “causes or contributes to condition”. This leads
to the identification of the following triples:

(1) AAT - causes or contributes to condition - liver disease
(2) SERPINA1 - causes or contributes to condition - pulmonary

disease

For grounding entities and relationships, SPIRES exploits the Ontology
Access Kit (OAK [29]) which looks up ontology elements such as
labels, definitions, relationships, and aliases. Specifically, AAT and
SERPINA1 are recognized to refer to the same term (PR:000014678),
the predicate is grounded to RO:0003302 property, liver disease is
grounded to MONDO:0005154, and pulmonary disease is grounded to
MONDO:0005275. Whenever an entity cannot be grounded, the prefix
AUTO: is associated with the entity mentioned (e.g., AUTO:gyneco-
logical_cancer). SPIRES outputs the following grounded triples
that suit the provided schema:

(1) PR:000014678 – RO:0003302 – MONDO:0005154
(2) PR:000014678 – RO:0003302 – MONDO:0005275

The validation of new potential triples derived from the SPIRES

module can be performed by evaluating their plausibility according

to the content of RNA-KG. This process can be modeled as a link

prediction task of new triples on RNA-KG. To this end, in SPIREX

5



(a)

(b)

(c)

Figure 4: LinkML key classes for protein-disease interaction.

we first use a graph representation learning technique for creating a

latent representation of RNA-KG. The computed entity embeddings

are then used as input of a classification model that is trained

to recognize existent and not-existent edges. At this stage, the

plausibility of a triple (𝑠, 𝑝, 𝑜) is assessed by using the embedding

of the triple as input to the trained model to get the probability of

its existence (its plausibility).

Specifically, the following three embedding algorithms have been

considered: deepWalk, node2vec and TransE. The first two are RW-

based models developed for homogeneous graphs, whereas the

last one is tailored for working with heterogeneous graphs. The

classification model is a Random Forest that outputs a score in [0, 1],
with a high value favoring the existence of a link, and vice versa.

In this way, the predicted probability of a link can be considered

as a score that quantifies the plausibility of a triple to be included

according to the already existing RNA-KG content.

Example 2. Consider the two triples extracted through SPIRES
in previous example. By exploiting the TransE embedding of RNA-
KG and the Random Forest classifier, the following evaluation of
plausibility can be generated.

(1) PR:000014678 – RO:0003302 – MONDO:0005154 – Plausi-
bility 0.35

(2) PR:000014678 – RO:0003302 – MONDO:0005275 – Plausi-
bility 0.89

In this case, we can conclude that the second triple is “more plausible”
and can be considered for direct inclusion in the KG. Conversely, the
first triple, with a lower plausibility score, requires manual verification
by a domain expert before it can be confirmed.

4 EXPERIMENTAL RESULTS
Experiments have been realized for both modules of SPIREX. For

the first module, we evaluated the prediction accuracy of SPIRES

in extracting triples (by considering a set of manually annotated

documents). We also compared SPIRES with base LLMs to verify

the advantage of using LinkML in the specification of the domain

schema. For the second module, we first assessed the performance

0 0.2 0.4 0.6 0.8

snoRNA
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lncRNA

gene

disease

miRNA

Rate

FN

FP

TP

# Paragraphs TP FP FN F-score Precision Recall
miRNA 42 238 14 36 0.90 0.94 0.87

disease 75 312 31 77 0.86 0.91 0.80

gene 45 199 11 79 0.82 0.95 0.72

lncRNA 19 76 4 39 0.78 0.95 0.66

protein 46 155 24 62 0.78 0.87 0.71

snoRNA 11 17 1 17 0.66 0.94 0.50

Figure 5: RE results for SPIRES-GPT4t. For the sake of read-
ability, the entities involved in relationships appearing in at
least 10 paragraphs are reported. Grounding is realized with
HGNC, PRO, Mondo, HPO, and RO.

of three state-of-the-art link-prediction models when applied on

RNA-KG views; they were finally used to evaluate the plausibility

of triples extracted through SPIRES according to RNA-KG.

SPIRES prediction accuracy and comparison with base LLMs. A
corpus of 100 scientific articles related to RNA molecules and their

interactions was gathered from PubMed, ResearchGate, and Google

Scholar. Starting from them, we identified abstracts, discussions, or

specific subsections within the domain of interest. They were man-

ually annotated with the entities and the kinds of interactions that

can be extracted from them (reported in Figure 2). For evaluating
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miRNA-disease 37 145 7 20 0.92 0.95 0.88

lncRNA-disease 9 36 1 10 0.90 0.97 0.82

gene-protein 21 90 3 22 0.88 0.97 0.80

miRNA-gene 24 78 6 15 0.88 0.93 0.84

gene-lncRNA 8 30 1 23 0.72 0.97 0.57

protein-disease 29 65 21 40 0.68 0.76 0.62

Figure 6: RE results for SPIRES-GPT4t for each category of
interaction involving entities mentioned in Figure 5 and pre-
senting at least 25 occurrences.

the obtained predictions, we have used standard metrics (precision,

recall, and F-score) by considering the True Positive (TP), False

Positive (FP), and False Negative (FN) according to the manually

tagged paragraphs.

Figure 5 shows the results obtained using SPIRES (with the GPT4t

engine) for extracting relations involving a given entity. The y-axis

reports the entities that are present in relationships appearing in at

least 10 paragraphs, while the x-axis shows the true positive TP, FP,

and FN rates. We observe that precision values consistently exceed

recall values due to the higher number of FPs compared to FNs. We

achieved high precision on the 42 documents involving miRNAs

because these molecules are always specified using recognizable

patterns and no synonyms (e.g., the “miR-” substring followed by

numbers and the “-3p” or “-5p” substring). Conversely, relations

involving snoRNA molecules are often undetected because they

act in biomolecular complexes such as “SNHG8 interacts with miR-

152/c-MET”. These relations are often misinterpreted by an LLM, as

it fails to recognize that “miR-152/c-MET” consists of two distinct

entities, which would need the extraction and grounding of two

separate relations (“SNHG8 interacts with miR-152” and “SNHG8

interacts with c-MET”).

Figure 6 illustrates results obtained using SPIRES (with the GPT4t

engine) for each category of interaction involving entities presented

in Figure 5 and mentioned in at least 25 relations. A consistent trend

is evident where the TP rate is higher than both the FP and FN rates.

The only exceptions are gene-lncRNA and protein-disease relations,

where the FN rate is higher compared to the other relations. These

types of relations are often undetected because they are expressed

in complex ways, leading to inaccurate entity recognition and subse-

quent grounding. For instance, the interchangeable use of symbols

SPIRES-

GPT4t

SPIRES-

GPT3.5t

GPT3.5t Llama 2

0.72

0.62

0.34

0.30

0.06

0.09

0.13

0.15

0.22

0.29

0.53

0.55

TP rate

FP rate

FN rate

TP FP FN F-score Precision Recall
SPIRES-GPT4t 559 44 170 0.84 0.93 0.77

SPIRES-GPT3.5t 497 70 232 0.77 0.88 0.68

GPT3.5t 287 105 442 0.50 0.73 0.39

Llama 2 256 127 473 0.46 0.67 0.35

Figure 7: Comparing SPIRES, Llama, and GPT in the RE task
on the manually annotated dataset.

like “/” and “,” (e.g., “lncRNAs mapped to chromosome 8q.24, such

as CACS11, CCAT family, and PVT1, promote CRC progression by

interacting with proteins to stimulate myc or other Wnt target gene

expression at the posttranslational level”). Additionally, mapping

proteins to PRO is challenging when textual information is sparse

or ambiguously expressed. For instance, the mention of “PMP-22”

solely as “myelin 22” instead of “peripheral myelin protein 22” can

lead to inaccurate grounding [9]. Despite this, the overall precision

remains remarkably high and, in biomedicine, this is preferable

because it prioritizes certainty over ambiguity.

To assess the performance of SPIRES we compared it with Ope-

nAI GPT (ver. GPT-3.5-t) and Llama 2 [36] (ver. llama-2-70b-chat).

As back-end LLM of SPIRES, we considered both GPT3.5t and GPT4t.

Regarding the prompt to be used with the base LLM system, we

considered a simple one requesting to extract triples from the con-

sidered text with an explicit request for mapping the extracted

concepts to appropriate terminologies. Given that both OpenAI

GPT and Llama 2 caution that the ontology identifiers provided

are hypothetical and might not align with actual identifiers in the

ontologies, and considering the general community advice against

relying on IDs from an LLM [17], we decided to substitute the

grounding process with our manually curated look-up tables [8].

As shown in Figure 7, SPIRES outperforms OpenAI GPT-3.5t or

Llama 2 alone both in terms of precision and recall. The histogram

points out a high increment in TP rate and a decrease in FP and FN

rates when adopting SPIRES for extracting relations that adhere to

a specified schema within texts. Furthermore, our results are com-

parable to the named entity extraction analysis involving diseases

and chemicals on the BC5CDR corpus presented in [6]. By adopting

GPT-4t in SPIRES, the recall metric improves due to a lower FN

rate, positively affecting the F-score. Our results also show a slight
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View KG embedding F1 AUC Precision Recall
RNA-KGmiRNA deepwalk 0.8577/0.8537 0.8190/0.8009 0.7866/0.7855 0.9430/0.9349

node2vec 0.8605/0.8499 0.8387/0.8145 0.8005/0.7973 0.9303/0.9102

TransE 0.8524/0.8470 0.8108/0.7920 0.7871/0.7855 0.9295/0.9192

RNA-KGmiRNA-10 deepwalk 0.8383/0.8257 0.8051/0.7839 0.8044/0.8005 0.8750/0.8525

node2vec 0.8531/0.8454 0.8315/0.8156 0.8152/0.8126 0.8947/0.8809
TransE 0.8437/0.8223 0.8333/0.8052 0.8160/0.8092 0.8734/0.8357

RNA-KGRNA-10 deepwalk 0.8429/0.8342 0.8192/0.8010 0.8021/0.7992 0.8886/0.8727
node2vec 0.8189/0.7990 0.7984/0.7737 0.8077/0.8013 0.8304/0.7967

TransE 0.8470/0.8362 0.8291/0.8112 0.8128/0.8094 0.8842/0.8649

RNA-KGpiRNA-10 deepwalk 0.8801/0.8794 0.8524/0.8328 0.8111/0.8115 0.9620/0.9597
node2vec 0.8639/0.8614 0.8367/0.8154 0.8000/0.7998 0.9389/0.9335

TransE 0.8258/0.8176 0.7719/0.7436 0.7754/0.7727 0.8832/0.8680

RNA-KGpiRNA deepwalk 0.8752/0.8749 0.8378/0.8163 0.7991/0.7989 0.9674/0.9667
node2vec 0.8563/0.8518 0.8291/0.8057 0.7972/0.7956 0.9250/0.9166

TransE 0.8228/0.8131 0.7747/0.7467 0.7789/0.7754 0.8719/0.8546

Table 1: Link prediction performance metrics for different prediction models in the train/validation sets.

improvement in the F-score with respect to the one reported in [6]

because in the RE task we first extract entities, but only a few of

them are involved in relations, (thus, a subset of entities are erro-

neously discarded by SPIRES). Moreover, in our domain, relations

are often presented in clusters rather than separately (e.g., “miR-

155-5p plays a critical role in various physiological and pathological

processes such as hematopoietic lineage differentiation, immunity,

inflammation, viral infections, cancer, cardiovascular disease, and

Down syndrome.”). If SPIRES detects one relation correctly, likely

also the others in the cluster are correctly identified. Additionally,

apart from proteins, chemicals, and diseases, many other entities

are well-specified in the text (as mentioned, in case of miRNAs,

they follow a precise pattern) and this leads to an increase in the TP

rate. Finally, in [6] diseases were grounded considering only MeSH

terms. By contrast, both Mondo and HPO are used as annotators

which, as the authors suggest, led to improve the performances.

Evaluation of link prediction models on RNA-KG. To evaluate the

capabilities of the prediction module of SPIREX, we considered

five distinct views of RNA-KG and generated their vectorial rep-

resentations using the deepwalk, node2vec, and TransE models.

These representations are then used to train a prediction model to

estimate the link plausibility.

Each view is a subgraph of RNA-KG and is defined based on a

schema that is a subset of the one in Figure 2, i.e., it includes entities

and relations (e.g., the relations between miRNA sequences and

diseases) that focus on predicting specific relations between RNA

molecules and other entities (e.g., diseases or GO terms).

We considered the possibility that training predictive models

on data from public sources focusing on specific RNAs, GO terms,

or diseases (e.g., miRCancer, which focuses on miRNA-cancer in-

teractions) could introduce bias. However, we believe that using

RNA-KG for generating viewsmitigates this risk because it has been

developed by the integration of more than 60 sources covering a

wide variety of RNAs, GO terms, and diseases.

For each view, we extract a subset of triples that defines the test

set used to assess the link-prediction task. To create the test set, two

different strategies are considered. In the first strategy, the links

extracted from a specific data source are eliminated from the view

and used as test set. In the second strategy, a sample corresponding

to the 10% of the triples in the view is eliminated from the view and

used as test set. In both strategies, graph connectivity is guaranteed

according to a connected Monte-Carlo hold-out policy [5]. Using

these strategies, the following views have been generated:

(1) RNA-KGmiRNA. It contains ∼1.1M triples involving the fol-

lowing kinds of entities: miRNA, disease, and gene. The

test is constructed according to the first strategy and cor-

responds to the triples extracted from the source RNAdis-

ease [10].

(2) RNA-KGmiRNA-10. Analogously to the previous case, it con-

tains ∼1.1M the triples involving genes, miRNAs, and dis-

eases, but the test set is obtained according to the second

strategy.

(3) RNA-KGRNA-10. It contains ∼6M triples involving the fol-

lowing kinds of entities: miRNA, lncRNA, protein, circRNA,

disease, gene, and GO terms. By applying the second strat-

egy, 10% of the triples is left for the test set.

(4) RNA-KGpiRNA-10. It contains ∼2M triples involving the fol-

lowing kinds of entities: variant (SNP), piRNA, disease,

lncRNA, miRNA, gene, and GO terms. The test set is ob-

tained according to the second strategy.

(5) RNA-KGpiRNA. It contains ∼2M triples involving the same

kinds of entities of the previous view. The test set is con-

structed according to the first strategy excluding the source

piRBase [39].

For the creation of the predictive model, 80% of each view is used

as a training set, while a validation set is composed of the remain-

ing 20% of the view (positive examples) plus the same amount of

negative samples that random triples not occuring in RNA-KG.

DeepWalk, node2vec, and TransE were used for creating the

embeddings of the training samples, which were then fed to a

Random Forest classifier trained for link prediction. The values of

the hyperparameters for the embedding and predictionmodels were
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Figure 8: (a) Distribution of the link-prediction probabilities for the positive/negative edges of the validation set. (b) Distribution
of the link-prediction probabilities in the test for the view RNA-KGmiRNA. (c) Distribution of the link-prediction probabilities
in the test for the view RNA-KGmiRNA-10.

set at the default values proposed in GRAPE [5]. Table 1 reports the

performance of the link prediction task based on the different graph

representation models for each view in the training and validation

sets; in all the settings, the predictive models attain a good level of

prediction capabilities. Moreover, Figure 8a shows the probability

distribution of the predictions of each model in all the views for

the positive and negative samples of the validation set. As we can

see, the models can successfully discriminate between positive and

negative examples in the validation set. Finally, each model has

been trained on the whole view and then applied to the test samples

to obtain the link probabilities.

For the RNA-KGmiRNA and RNA-KGmiRNA-10 views, Figures 8b-

8c depict the probability distribution of the model predictions in

the test sets. We can note that most of the (positive) relations in the

test set are identified. The same behavior has been observed also

for the other views that are not reported here for space constraints.

According to these results, the predictive module can be used to

validate the relations to include in RNA-KG and hence to assess the

plausibility of SPIRES predictions.

Evaluation of the plausibility of SPIREX predictions. The analysis
conducted in the previous section is further extended to evaluate

the ability of the predictive module to assess the plausibility of

the triples extracted by SPIRES. To this end, true positive triples

extracted from our manually curated dataset have been considered.

Figure 9a shows the distribution of the probabilities predicted on

the miRNA-disease triples extracted by SPIRES according to the

different representation models computed on RNA-KGmiRNA-10.

Green boxes represent the distributions of probabilities computed

over miRNA-disease links that are already included in RNA-KG

view, whereas red boxes represent the distributions of probabilities

computed over edges that are missing in RNA-KG. We highlight

9



the capabilities of the models to correctly classify almost all the

links already present in the RNA-KG view. They also discriminate

between plausible and implausible new triples, offering a potential

validation tool.

An histogram of the triples predicted by SPIRES on the RNA-

KGmiRNA-10 view according to deepwalk predictions is provided in

Figure 9b. In this case, green/red bars represent the probability of

links that are already included in the view (included) or that are new
triples that could be introduced in the view (not included). Note that
a large amount of (non yet included in RNA-KG) triples extracted

by SPIRES has been independently "validated" by using RNA-KG,

and can therefore be considered as plausible new candidates for

miRNA-disease relationships.

On the other hand, some triples proposed by SPIRES have a low

confidence according to the predictive module. These edges can

be considered "uncertain" given that they are not confirmed by

an independent edge prediction method that exploits the RNA-KG

topological characteristics. Analogous behavior has been observed

for the other views (not reported here for lack of space).

A potential reason for errors in predictions, particularly for

triples included in RNA-KG but showing a probability lower than

0.5, might be the presence of relationships between miRNAs and

overrepresented disease categories in RNA-KG (e.g., miRNA-cancer

relationships like prostate cancer, pancreatic cancer, sarcoma, col-

orectal cancer, breast cancer, and hepatocellular cancer). The high

frequency of miRNA connections to these diseases in RNA-KG

might lead to a situation where the model, being trained on nu-

merous miRNA links to these prevalent diseases, struggles to dis-

tinguish specific disease associations accurately. Consequently, it

becomes challenging for the ML algorithm to determine whether

a miRNA is genuinely involved in a specific disease. To mitigate

these issues in future work, we would like to incorporate additional

features for distinguishing the different miRNA-disease relation-

ships, like specific biological pathways and molecular features that

characterize specific diseases.

5 CONCLUDING REMARKS
In this paper we have described the initial steps in the design and

development of the SPIREX system for the extraction of meaningful

triples from scientific papers that exploit RNA-KG as a gold stan-

dard for checking the plausibility of the extracted triples. The initial

experimental results are encouraging of the effectiveness of the

proposed tool. At the current stage, we have used basic link predic-

tion models for assessing the relationship’s plausibility according

to the KG’s current state.

In future work, a much more accurate evaluation strategy that

also considers the performance of one-class approaches and the

evaluation of domain experts will be investigated. Moreover, we

wish to develop a web environment for supporting expert curators

in the extraction of meaningful facts from the scientific literature by

exploiting the SPIREX approach and thus reducing the user effort

in validating the extracted knowledge. In this direction, we will also

evaluate the usability of the developed system by enrolling expert

curators in the field. Finally, we wish to verify the application of the

proposed approach also to other biomedical contexts that exploit
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Figure 9: (a) Probability distribution of the miRNA-disease
edges extracted by SPIRES and validated according to dif-
ferent prediction models on the RNA-KGmiRNA-10 view.
‘Green’/‘red’ bars represent triples ‘included’/‘not included’
in the RNA-KG view. (b) Histogram of the triples predicted
by SPIRES on the RNA-KGmiRNA-10 view according to the
prediction probabilities obtained by deepWalk.

different KGs and the use of RAG techniques [24] to improve the

quality of the RE approach in the same spirit of [35].

ACKNOWLEDGMENTS
This research was in part supported by the “National Center for

Gene Therapy and Drugs based on RNA Technology”, PNRR-Next-

Generation EU program [G43C22001320007] and in part by the

MUSA - Multilayered Urban Sustainability Action - Project, funded

by the PNRR-NextGeneration EU program ([G43C22001370007],

Code ECS00000037).

10



REFERENCES
[1] Lada A Adamic and Eytan Adar. 2003. Friends and neighbors on the Web. Social

Networks 25, 3 (2003), 211–230. https://doi.org/10.1016/S0378-8733(03)00009-1

[2] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matt Broadhead, and

Oren Etzioni. 2007. Open information extraction from the web. In Proc. of 20th
Int’l Conf. on Artifical Intelligence. IJCAI, Hyderabad, India, 2670–2676.

[3] Rishi Bommasani et al. 2021. On the Opportunities and Risks of Foundation

Models. CoRR abs/2108.07258 (2021).

[4] Antoine Bordes, JasonWeston, Ronan Collobert, and Yoshua Bengio. 2011. Learn-

ing structured embeddings of knowledge bases. In Proc. of AAAI conference on
artificial intelligence, Vol. 25. AAAI, San Francisco, California, 301–306.

[5] Luca Cappelletti et al. 2023. GRAPE for fast and scalable graph processing and

random-walk-based embedding. Nature Computational Science 3, 6 (June 2023),
552–568. https://doi.org/10.1038/s43588-023-00465-8

[6] J Harry Caufield et al. 2024. Structured Prompt Interrogation and Recursive

Extraction of Semantics (SPIRES): a method for populating knowledge bases

using zero-shot learning. Bioinformatics 40, 3 (02 2024), btae104. https://doi.

org/10.1093/bioinformatics/btae104

[7] Emanuele Cavalleri et al. 2023. A Meta-Graph for the Construction of an

RNA-Centered Knowledge Graph. In Bioinformatics and Biomedical Engineering.
Springer Nature Switzerland, Cham, 165–180. https://doi.org/10.1007/978-3-

031-34953-9_13

[8] Emanuele Cavalleri et al. 2023. RNA-KG: An ontology-based knowledge graph

for representing interactions involving RNAmolecules. arXiv:2312.00183 [cs.CE]

[9] Emanuele Cavalleri and Marco Mesiti. 2024. On the extraction of meaningful

RNA interactions from Scientific Publications through LLMs and SPIRES. In: 8th

Int’l workshop on Data Analytics solutions for Real-LIfe APplications..

[10] Jia Chen et al. 2022. RNADisease v4.0: an updated resource of RNA-associated

diseases, providing RNA-disease analysis, enrichment and prediction. Nucleic
Acids Research 51, D1 (2022), D1397–D1404. https://doi.org/10.1093/nar/gkac814

[11] Kartik Detroja, C.K. Bhensdadia, and Brijesh S. Bhatt. 2023. A survey on Relation

Extraction. Intelligent Systems with Applications 19 (2023), 200244. https://doi.

org/10.1016/j.iswa.2023.200244

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

arXiv:1810.04805 [cs.CL]

[13] Allyson Ettinger. 2020. What BERT Is Not: Lessons from a New Suite of Psy-

cholinguistic Diagnostics for LanguageModels. Transactions of the Association for
Computational Linguistics 8 (2020), 34–48. https://doi.org/10.1162/tacl_a_00298

[14] Oren Etzioni et al. 2004. Web-scale information extraction in knowitall: (prelimi-

nary results). In Proc. of 13th Int’l Conf. on World Wide Web. ACM, New York NY

USA, 100–110. https://doi.org/10.1145/988672.988687

[15] Charles C Fries. 1954. Meaning and linguistic analysis. Language 30, 1 (1954),
57–68.

[16] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for

Networks. In Proc. of the 22nd ACM SIGKDD Intl Conf. on Knowledge Discovery
and Data Mining. ACM, San Francisco, California, USA, 855–864. https://doi.

org/10.1145/2939672.2939754

[17] Tudor Groza et al. 2024. An evaluation of GPT models for phenotype concept

recognition. BMC Medical Informatics and Decision Making 24, 1 (2024), 30.

https://doi.org/10.1186/s12911-024-02439-w

[18] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In Proc. of 31st Int’l Conf. on Neural Information
Processing Systems. NIPS, Long Beach, CA, USA, 1025–1035.

[19] Zellig S Harris. 1954. Distributional structure. Word 10, 2-3 (1954), 146–162.

[20] Pere-Lluís Huguet Cabot and Roberto Navigli. 2021. REBEL: Relation Extraction

By End-to-end Language generation. In Findings of the Association for Computa-
tional Linguistics. ACL, Punta Cana, Dominican Republic, 2370–2381.

[21] Rebecca Jackson et al. 2021. OBO Foundry in 2021: operationalizing open data

principles to evaluate ontologies. Database 2021 (10 2021). https://doi.org/10.

1093/database/baab069

[22] Ziwei Ji et al. 2023. Survey of Hallucination in Natural Language Generation.

Comput. Surveys 55, 12 (March 2023), 1–38. https://doi.org/10.1145/3571730

[23] Thomas Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph

Convolutional Networks. In Proceedings of ICLR’17. ICLR, Toulon, France.
[24] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-

täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive NLP

tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.
[25] Mausam, Michael Schmitz, Stephen Soderland, Robert Bart, and Oren Etzioni.

2012. Open Language Learning for Information Extraction. In Proc. of 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning. ACM, Jeju Island Korea, 523–534.

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.

Distributed Representations of Words and Phrases and Their Compositionality.

In Proc. of 26th Int’l Conf. on Neural Information Processing Systems. NIPS, Harrahs
and Harveys, Lake Tahoe, 3111–3119.

[27] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. 2009. Distant supervi-

sion for relation extraction without labeled data. In Proc. of Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP. ACL, Suntec, Singapore, 1003–1011.

[28] Sierra Moxon et al. 2021. The Linked Data Modeling Language (LinkML): A

General-Purpose Data Modeling Framework Grounded in Machine-Readable

Semantics. In Int’l Conf. on Biomedical Ontologies. ICBO, Bozen-Bolzano, Italy.
https://ceur-ws.org/Vol-3073/paper24.pdf

[29] Chris Mungall et al. 2023. INCATools/ontology-access-kit: v0.5.24. https:

//doi.org/10.5281/zenodo.10277632

[30] Tapas Nayak and Hwee Tou Ng. 2019. Effective Modeling of Encoder-Decoder

Architecture for Joint Entity and Relation Extraction. In AAAI Conference on
Artificial Intelligence. AAAI, New York, USA. https://api.semanticscholar.org/

CorpusID:208248243

[31] Sachin Pawar, Girish K. Palshikar, and Pushpak Bhattacharyya. 2017. Relation

Extraction : A Survey. arXiv:1712.05191 [cs.CL]

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online

Learning of Social Representations. In Proc. of 20th ACM SIGKDD Int’l Conf.
on Knowledge Discovery and Data Mining. ACM, New York USA, 701–710.

https://doi.org/10.1145/2623330.2623732

[33] Pengda Qin, Weiran Xu, and William Yang Wang. 2018. Robust Distant Super-

vision Relation Extraction via Deep Reinforcement Learning. In Proc. of 56th
Annual Meeting of the Association for Computational Linguistics. ACL, Melbourne,

Australia, 2137–2147. https://doi.org/10.18653/v1/P18-1199

[34] Chris Quirk and Hoifung Poon. 2017. Distant Supervision for Relation Extraction

beyond the Sentence Boundary. In Proc. of 15th Conference of the European Chapter
of the Association for Computational Linguistics. ACL, Valencia, Spain, 1171–1182.

[35] Darya Shlyk, Tudor Groza, Stefano Montanelli, Emanuele Cavalleri, and Marco

Mesiti. 2024. REAL: A Retrieval-Augmented Entity Linking Approach for Biomed-

ical Concept Recognition. In The 23rd ACL workshop BioNLP. ACL, Bangkok,
Thailand.

[36] Hugo Touvron et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat

Models. arXiv:2307.09288 [cs.CL]

[37] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat 1050, 20 (2017),
10–48550.

[38] Somin Wadhwa, Silvio Amir, and Byron C. Wallace. 2023. Revisiting Relation

Extraction in the era of Large Language Models. In Proc. of Int’l Conf. of the
Association for Computational Linguistics, Vol. 2023. ACL, Toronto, Canada, 15566–
15589. https://doi.org/10.18653/v1/2023.acl-long.868

[39] Jiajia Wang et al. 2021. piRBase: integrating piRNA annotation in all aspects.

Nucleic Acids Research 50, D1 (Dec. 2021), D265–D272. https://doi.org/10.1093/

nar/gkab1012

[40] Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014.

Embedding Entities and Relations for Learning and Inference in Knowledge

Bases. In Int’l Conf. on Learning Representations. ICLR, San Diego, CA, USA.

https://api.semanticscholar.org/CorpusID:2768038

[41] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2022. Heteroge-

neous Network Representation Learning: A Unified Framework With Survey

and Benchmark. IEEE Transactions on Knowledge and Data Engineering 34, 10

(Oct. 2022), 4854–4873. https://doi.org/10.1109/tkde.2020.3045924

[42] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.

2019. Graph transformer networks. Advances in neural information processing
systems 32 (2019).

[43] Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu, and Jun Zhao. 2018. Ex-

tracting Relational Facts by an End-to-End Neural Model with Copy Mechanism.

In Proc. of the 56th Annual Meeting of the Association for Computational Linguistics.
ACL, Melbourne, Australia, 506–514. https://doi.org/10.18653/v1/P18-1047

[44] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural

networks. In Proc. of 32nd Int’l Conf. on Neural Information Processing Systems.
NIPS, Montréal CANADA, 5171–5181.

11

https://doi.org/10.1016/S0378-8733(03)00009-1
https://doi.org/10.1038/s43588-023-00465-8
https://doi.org/10.1093/bioinformatics/btae104
https://doi.org/10.1093/bioinformatics/btae104
https://doi.org/10.1007/978-3-031-34953-9_13
https://doi.org/10.1007/978-3-031-34953-9_13
https://arxiv.org/abs/2312.00183
https://doi.org/10.1093/nar/gkac814
https://doi.org/10.1016/j.iswa.2023.200244
https://doi.org/10.1016/j.iswa.2023.200244
https://arxiv.org/abs/1810.04805
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1145/988672.988687
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1186/s12911-024-02439-w
https://doi.org/10.1093/database/baab069
https://doi.org/10.1093/database/baab069
https://doi.org/10.1145/3571730
https://ceur-ws.org/Vol-3073/paper24.pdf
https://doi.org/10.5281/zenodo.10277632
https://doi.org/10.5281/zenodo.10277632
https://api.semanticscholar.org/CorpusID:208248243
https://api.semanticscholar.org/CorpusID:208248243
https://arxiv.org/abs/1712.05191
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.18653/v1/P18-1199
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.acl-long.868
https://doi.org/10.1093/nar/gkab1012
https://doi.org/10.1093/nar/gkab1012
https://api.semanticscholar.org/CorpusID:2768038
https://doi.org/10.1109/tkde.2020.3045924
https://doi.org/10.18653/v1/P18-1047

	Abstract
	1 Introduction
	2 Related Work
	3 The SPIREX system
	4 Experimental results
	5 Concluding remarks
	Acknowledgments
	References

