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ABSTRACT
Though Large Language Models (LLMs) have shown remarkable
open-generation capabilities across diverse domains, they struggle
with knowledge-intensive tasks. To alleviate this issue, knowledge
integration methods have been proposed to enhance LLMs with
domain-specific knowledge graphs using external modules. How-
ever, they suffer from data inefficiency as they require both known
and unknown knowledge for fine-tuning. Thus, we study a novel
problem of integrating unknown knowledge into LLMs efficiently
without unnecessary overlap of known knowledge. Injecting new
knowledge poses the risk of forgetting previously acquired knowl-
edge. To tackle this, we propose a novel Infuser-Guided Knowledge
Integration (InfuserKI) framework that utilizes transformer internal
states to determine whether to enhance the original LLM output with
additional information, thereby effectively mitigating knowledge for-
getting. Evaluations on the UMLS knowledge graph demonstrate that
InfuserKI can effectively acquire new knowledge and outperform
state-of-the-art baselines by 9%, in reducing knowledge forgetting.
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1 INTRODUCTION
Large Language Models (LLMs) have revolutionized fields such
as Question Answering (QA), dialogue, and information retrieval,
demonstrating impressive capabilities in various language tasks [34,
35]. However, LLMs can generate misleading or inaccurate texts,
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especially in knowledge-intensive tasks such as open-domain QA
[17], due to lack of domain knowledge and catastrophic forgetting
after fine-tuning [18, 40]. Updating and customizing LLMs with
domain knowledge integration is highly valued across applications.
For example, companies might personalize models with specific
product knowledge, while hospitals could tailor models using their
case data.

Knowledge Graphs (KGs) serve as an ideal source for enhancing
domain-specific knowledge due to their structured and quantifiable
knowledge units. To leverage this knowledge, several strategies have
been developed. Generally, these include instruction tuning LLMs
with extensive knowledge entity explanations [37], creating triplet-
based pre-training tasks [28, 36, 42], employing KGs as external
sources for retrieval [31, 39], and directly using parameter-efficient
fine-tuning (PEFT) methods such as LoRA [13] and adapters [12]
or model editing (ME) methods such as T-Patcher [14] to inject
knowledge in a triplet-to-text way [6, 7, 27]. However, pre-training
or fine-tuning LLMs with the entire KGs is not only time-consuming
but also leads to data inefficiencies, especially when models relearn
knowledge they already have. To address this issue, we focus on
integrating new, previously unknown knowledge only. This precise
focus, however, introduces the risk of catastrophic forgetting, where
the addition of new knowledge may affect existing knowledge. Thus,
we pose a novel research question: How can we efficiently inte-
grate new knowledge from domain-specific KGs into LLMs while
preventing catastrophic forgetting?

In this work, we propose the Infuser-guided Knowledge Integra-
tion (InfuserKI) framework, specifically designed for integrating
domain-specific knowledge from KGs into LLMs. Inspired by [1],
which shows the LLM’s internal states can indicate the truthfulness
of its own generated sentences, our framework features an infusing
mechanism that checks whether LLMs possess current knowledge.
This enables the adaptive selection of supplementary information for
known and unknown knowledge, effectively reducing the impact on
existing knowledge and mitigating knowledge forgetting. Moreover,
InfuserKI utilizes knowledge adapters to encode new knowledge
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while preserving the original model parameters. To inject new knowl-
edge only, the InfuserKI framework begins by detecting knowledge
unknown to LLMs. Following [30, 44], we then generate multiple-
choice questions for a knowledge triplet <ℎ, 𝑟, 𝑡> using predefined
relational templates, with an example in Fig. 1, and inject them by
fine-tuning knowledge adapters. Our main contributions are:
(1) We study a novel problem of effectively integrating unknown

knowledge from KGs into LLMs without affecting known knowl-
edge.

(2) We propose a new knowledge integration framework InfuserKI,
which enables the adaptive selection of supplementary informa-
tion for known and unknown knowledge, effectively mitigating
knowledge forgetting.

(3) Evaluations on UMLS reveal InfuserKI’s effective knowledge
integration with less forgetting, sustained performance on large-
scale data and superior generality across unseen templates and
downstream tasks.

2 RELATED WORK
Knowledge Integration. LLMs often produce seemingly accurate

but incorrect answers due to missing knowledge. Addressing this,
knowledge integration (KI) into LLMs has become popular. KGs,
which capture wide or domain-specific knowledge, serve as an ideal
option due to their structured and quantifiable knowledge units. KI
from KGs usually occurs during pre-training or fine-tuning. For
example, ERNIE [33] injects KG’s embeddings, such as TransE [8],
into models using an entity-token alignment masking loss. How-
ever, retraining is time-consuming. In fine-tuning, methods includ-
ing JointLK [32] and GreaseLM [43] apply graph neural networks
to model knowledge subgraphs, relying on KGs until inference.
Fully fine-tuning models such as PMC-LLaMa [37] is computation-
ally costly; therefore PEFT methods, for instance, LoRA [13] and
Adapters [12], are more feasible. Based on these works, MoP [27],
K-Adapter [36], and KB-adapters [7] inject knowledge directly into
model parameters but risk catastrophic forgetting of unrelated knowl-
edge [26]. Thus, we focus on adapter-based integration that mini-
mizes the impact on unrelated knowledge.

Model Editing. Model Editing (ME) for LLMs falls into two cat-
egories: gradient-based and extension-based. Gradient-based meth-
ods, as described by Dai et al. [4], modify specific weights related
to knowledge edits. ROME [25] and MEMIT [26] take this further
by updating entire Feedforward Network (FFN) layers to enhance
model editing. These methods, however, are limited in the number
of edits or may require considerable time for execution. On the
other hand, extension-based methods add new parameters to correct
inaccurate information. CALINET [6] and T-Patcher [14] incorpo-
rate memory slots or trainable "patches" into final FFN outputs.
GRACE [10] employs a key-value adapter with a deferral mecha-
nism for the selective use of knowledge based on input. However,
the adapter-based modules positioned in top transformer layers are
designed to calibrate false facts. Instead, our method aims to infuse
new knowledge by placing adapters throughout transformer layers.

Catastrophic Forgetting. Catastrophic forgetting occurs when
learning new information causes a drastic loss of previously learned
knowledge [29]. This becomes particularly evident in sequential

inter-task learning, where acquiring new task knowledge leads to
the forgetting of earlier task knowledge [24]. To tackle this, various
methods are developed. Xuhong et al. [38] applies regularization
constraints to minimize parameter changes when learning new tasks.
Elastic Weight Consolidation incorporates the Hessian matrix into
parameter regularization to reduce forgetting [16]. Replay-based
methods sample original training examples to aid memory [20]. The
technique of knowledge distillation aligns the predictions of a fine-
tuned model with those of the model before fine-tuning [3]. PEFT
also mitigates forgetting. For instance, LoRA [13] uses low-rank ma-
trices for weight modifications while keeping pre-trained parameters
frozen, achieving performance comparable to full fine-tuning. How-
ever, these solutions focus on sequential inter-task transfer learning.
Our focus shifts to intra-task knowledge forgetting, where integrat-
ing new knowledge leads to the potential loss of previously existing
knowledge.

3 PROPOSED FRAMEWORK - INFUSERKI
3.1 Overview
The objective of our method is to leverage domain knowledge from
KGs to enhance LLMs for knowledge-intensive tasks. Specifically,
given an LLM 𝑝𝜃 ∈ P and a set of knowledge triplets T ∈ T, our
goal is to fine-tune the LLM 𝑝𝜃 into 𝑝′

𝜃
, incorporating previously

unknown knowledge T𝑢𝑛𝑘 without affecting existing knowledge
T𝑘𝑛𝑜𝑤𝑛 . For efficiency, we only inject knowledge that is unknown
to the LLM as:

FKI : P × T → P 𝑝′
𝜃
= 𝑓KI (𝑝𝜃 ,T𝑢𝑛𝑘 )

The core design of our InfuserKI framework comprises two steps:
knowledge detection and knowledge integration, as illustrated in
Fig. 1. To be specific, we first detect previously unknown knowledge
by feeding questions derived from knowledge triplets to the LLMs.
Upon identifying a set of unknown knowledge, we employ the knowl-
edge adapter, which is parallel to the original transformer layer and
trained to store new knowledge. The core of our framework, the
knowledge Infuser, is designed to strategically determine whether
new knowledge from the knowledge adapter should be engaged.
Throughout this process, we only fine-tune the knowledge adapter
and the Infuser while keeping the original transformer parameters
fixed.

3.2 Knowledge Detection
Given the inefficiency of fine-tuning LLMs on entire graphs, we
aim to identify and integrate only the LLMs’ unknown knowledge.
To overcome the difficulty of evaluating open-ended questions, we
convert triplets into multiple-choice questions [22], allowing for a
precise assessment of LLMs’ initial unknown knowledge (N3 + N4
in Fig. 2). This strategy enables efficient knowledge integration,
using multiple-choice training data to enhance domain-specific per-
formance.

Multiple-choice Question Generation. Given a knowledge triplet,
it is transformed into multiple-choice questions using relation tem-
plates generated by GPT-4. For instance, the triplet <Sutura cranii,
has finding site, Acrocephalosyndactyly type 5> is rephrased into
the question with golden answer as "What diagnosis is associated
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Figure 1: Infuser-Guided Knowledge Integration Framework.
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Figure 2: Knowledge Areas in LLMs: Original (N1+N2), Post-
Fine-Tuning (N1+N3), Forgotten (N2), and Failed Integration
(N4).

with the finding site of Sutura cranii? Answer: Acrocephalosyn-
dactyly type 5." The prompt for generating templates and knowledge
evaluation methods are detailed in Appendix 6.1.

Unknown Knowledge Detection. With multiple-choice questions,
we input them into LLMs. The testing prompts are in Table 3 in
Appendix. We use regular expressions to extract the chosen options
from the output of LLMs, treating the response as incorrect if no
options can be extracted. This helps us detect the LLMs’ known and
unknown knowledge. As shown in Fig. 2, the regions labeled N1
and N2 represent the set of known knowledge, denoted as T𝑘𝑛𝑜𝑤𝑛 ,
while the regions labeled N3 and N4 represent the set of unknown
knowledge, as T𝑢𝑛𝑘 . We then develop a new method to integrate
this unknown knowledge into the LLMs without affecting existing
knowledge.

3.3 Infuser-Guided Knowledge Integration
Next, we detail our Infuser-guided Knowledge Integration method
that effectively and efficiently injects unknown knowledge of LLMs.

Knowledge Adapter. To improve parameter efficiency, we use
parallel adapters as extra modules to learn new knowledge, keeping
the original LLM parameters unchanged, as shown in Fig. 3. Ex-
isting works [4, 9] show that Feed-Forward Network (FFN) layers
in transformer-based language models store knowledge effectively.
Thus, we add adapters parallel to the last 𝑀 FFN layers for the entire
𝐿 layers. For the 𝑙-th selected adapter layer where 𝑙 ∈ [𝐿 −𝑀 + 1, 𝐿],
we combine the FFN input H𝑙

𝑃
∈ R𝑛×𝑑 with the output H𝑙−1

𝐴
from

the previous adapter layer as:

H̃𝑙
𝐴 = H𝑙−1

𝐴 + H𝑙
𝑃 (1)

where 𝑛 is the length of the LLM input sequence, and 𝑑 is the
hidden dimension. The initial H𝐿−𝑀

𝐴
is set to a vector of all zeros.

Following [11], the adapter layer utilizes a down-projection with
Wdown ∈ R𝑑×𝑑

′
to transform the combined input H̃𝑙

𝐴
into a lower-

dimensional space specified by the bottleneck dimension 𝑑′ so as to
facilitate the learning of new patterns with minimal extra space. This
is followed by a nonlinear activation function 𝜎 , and subsequently,
an up-projection is applied with Wup ∈ R𝑑

′×𝑑 as:

H𝑙
𝐴 = 𝜎 (H̃𝑙

𝐴Wdown)Wup (2)

Typically, the adapter output directly merges with the original output
from the FFN as follows:

H𝑙
𝑂 = H𝑙

𝐴 + FFN(H𝑙
𝑃 ) (3)

H𝑙
𝑂

is then fed into either the next transformer attention layer or the
final linear and softmax layer. However, this approach can overload
the LLM with unnecessary information about knowledge it already
knows, causing the forgetting issue.
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Figure 3: Infuser-Guided Knowledge Adapters.

Knowledge Infuser. To ensure that these extra modules do not con-
fuse the LLM about its existing knowledge, we propose an Infuser
model to more effectively infuse the knowledge from the knowledge
adapter to the LLM. Intuitively, for a given question, the Infuser
assesses if the LLM knows the knowledge at hand. If not, the In-
fuser can fuse more knowledge from H𝑙

𝐴
to LLM to provide extra

information. If the LLM already knows, H𝑙
𝐴

should have less impact.
Recent work [1] indicates that checking the LLM’s internal states
can determine if it knows the current question, which paves us a way
to design the Infuser. Specifically, we derive an infusing score from
the input of an FFN sublayer as follows:

𝑟 𝑙 = 𝑓𝐼𝑛 (Mean(H𝑙
𝑃 )) (4)

where 𝑓𝐼𝑛 denotes the Infuser module implemented as a multilayer
perceptron (MLP) with a sigmoid activation function and the Mean
function averages the vector along the sequence length. This allows
infusing score 𝑟 𝑙 to be mapped to the range [0, 1], indicating how
well the LLMs know about the knowledge based on their interme-
diate states in the 𝑙-th FFN layer (H𝑙

𝑃
). As a result, the infusing

mechanism helps LLMs learn new knowledge without forgetting
what they already know. However, it is difficult for the Infuser to
recognize existing knowledge if it only encounters new knowledge
during fine-tuning. To fix this, we also include a modest quantity
of samples representing knowledge the LLMs already have. Before
fine-tuning, we first pre-train the Infuser on a binary infusing task
with a balanced mix of known and unknown samples. The Infuser
loss is a binary cross-entropy loss function as:

L𝐼𝑛 = E𝑥,𝑦𝐼𝑛
[
BCE(𝑓𝐼𝑛 (H𝑙

𝑃 ), 𝑦𝐼𝑛)
]

(5)

where 𝑥 is the sample and the infusing label 𝑦𝐼𝑛 is 1 for new knowl-
edge and 0 for previously acquired knowledge. Finally, we obtain an
additive filtered adapter vector, which is integrated with the original
FFN output:

H𝑙
𝑂 = 𝑟 𝑙H𝑙

𝐴 + FFN(H𝑙
𝑃 ), (6)

which can selectively incorporate knowledge from the adapter into
the fixed base model.

Objective Function of InfuserKI. We employ unknown knowl-
edge identified during the knowledge detection phase to fine-tune
both the knowledge adapter and the Infuser. The InfuserKI frame-
work is divided into two phases: Infuser tuning and QA (Question

Answering) training as illustrated by the following objective func-
tion:

L =

{
L𝐼𝑛, Infuser Tuning
L𝑄𝐴, QA Training

(7)

In terms of QA training, we use question-based instructions with
standard answers as golden responses. The QA loss is akin to the con-
ventional training loss used in transformer-based language models,
tailored to adapt instructions within a specific domain:

L𝑄𝐴 = E𝑥,𝑦


1
|𝑦 |

|𝑦 |∑︁
𝑖=1

CE(𝑝𝜃 ( · |𝑥, 𝑦1,...,𝑖−1 ), 𝑦𝑖 )
 (8)

where CE(·, ·) denotes the cross-entropy loss function, 𝑦 = 𝑦1, . . . , is
the golden output, and 𝑝𝜃 (·|𝑥,𝑦1,...,·,𝑖−1) is the prediction of an LLM.
Note that we also incorporate a small set of yes/no QA samples to
enhance the model generality to various question types.

To be specific, given an LLM 𝑝𝜃 and a KG with knowledge triplets
<ℎ, 𝑟, 𝑡>, we generate question-based instructions 𝑞 and standard
answers 𝑦. The training is divided into two stages. Initially, we tune
the Infuser using a small set of balanced samples of known and
unknown, as per Eq. 5. In the second stage, we fine-tune the model
using a QA loss to integrate unknown knowledge, following Eq. 8.

4 EXPERIMENTS
4.1 Experimental Setup
We evaluate our InfuserKI framework with competitive baselines
on a domain UMLS knowledge graph and the corresponding down-
stream task in terms of reliability, locality, and generality.

Datasets. We conduct experiments on a medical KG UMLS [2]
with PubMedQA [15] as the downstream task.

Metrics. Following [14] (see Appendix 6.3), as shown in Fig. 2
with areas for various knowledge dynamics, we use the following
metrics: (1) Newly-learned Rate (NR) for reliability, calculated
by 𝑁𝑅 = E𝑥∈N3+N4 [𝑝𝑘𝑛𝑜𝑤𝑛 (𝑥)] with 𝑝𝑘𝑛𝑜𝑤𝑛 (𝑥) = 1 for correct
answers and 0 for incorrect ones; (2) Remembering Rate (RR)
for locality, defined as 𝑅𝑅 = E𝑥∈N1+N2 [𝑝𝑘𝑛𝑜𝑤𝑛 (𝑥)]; (3) F1_T1
and F1_T2 for seen templates to assess reliability and locality and
F1_T3 to F1_T5 for unseen templates, with their average, denoted as
F1_Unseen, serving to assess generality; and (4) Downstream-Task
F1 for the effectiveness of knowledge integration on downstream
tasks.

Baselines. We compare InfuserKI against both PEFT methods
and ME techniques. The PEFT baselines include: (i) Prefix Tun-
ing [19] employs learnable prompts in input or intermediate layers;
(ii) LoRA [13] uses trainable low-rank matrices for self-attention
weights while freezing other parameters; (iii) QLoRA [5] quantizes
pre-trained models to 4 bits based on LoRA.

All PEFT methods are tested with the same mix of unknown and
known samples to ensure fairness. The adopted Knowledge Model
Editing Methods are: (i) CALINET [6] corrects false knowledge by
fine-tuning an adapter in a specific FFN layer while keeping original
model parameters intact; (ii) T-Patcher [14] adds a few trainable
neurons to the last FFN layer for error correction.
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Reliability Locality Generality
Methods NR RR F1_T1 F1_T2 F1_T3 F1_T4 F1_T5 F1_Unseen PubMedQA
LLaMa-2-7B - - 0.41 0.53 0.42 0.50 0.39 0.44 0.38
CALINET 1.00 0.52 0.81 0.75 0.50 0.68 0.46 0.55 0.46
T-Patcher 0.73 0.06 0.45 0.71 0.30 0.65 0.32 0.42 0.40
Prefix Tuning 0.70 0.90 0.78 0.71 0.63 0.54 0.60 0.59 0.44
LoRA 0.92 0.80 0.87 0.74 0.82 0.72 0.78 0.77 0.47
QLoRA 0.97 0.88 0.93 0.78 0.79 0.64 0.81 0.75 0.49
Ours 0.99 0.99 0.99 0.89 0.91 0.82 0.92 0.88 0.58

Table 1: Comparative results of InfuserKI with PEFT and ME methods on the UMLS 2.5k triplets.

Experimental Details. We use LLaMa-2-7B [34] as our base
LLM. Following MoP [27], we sample parts of the KG (2, 500 triplets
for UMLS) in our experiments. During fine-tuning, we set the dimen-
sionality 𝑑′ to 10 and positioned the adapters in the last 30 layers out
of 32. Our approach adds approximately 2.5M extra parameters. Us-
ing the AdamW optimizer [21] with a batch size of 8 and a learning
rate of 1× 𝑒−4, training takes about 30 minutes per epoch for UMLS
2.5k on 4×A100 GPU servers. The PEFT baselines are implemented
following LLaMa-Adapter [41] and PEFT [23].

4.2 Results and Analysis
Table 1 show a comparison of our InfuserKI against existing PEFT
and ME methods on the UMLS with 2, 500 triplets. We can observe:
(1) The performance of Vanilla LLaMa-2-7B underscores a lack of
domain-specific knowledge, highlighting its knowledge limitations
in specialized domains. (2) Our method outperforms ME baselines
such as CALINET and T-Patcher, which focus on correcting exist-
ing knowledge by positioning adapters in earlier transformer layers.
This emphasis makes them less suited for integrating new knowledge
compared to our approach. (3) Compared to PEFT methods such as
Prefix Tuning, LoRA, and QLoRA, our method achieves superior lo-
cality (RR). This improvement stems from our infusing mechanism’s
adaptive selection of supplementary information, which effectively
prevents adapters from interfering with previously acquired knowl-
edge. (4) Our method outperforms the T-Patcher across all metrics.
Although T-Patcher reduces the impact on a minimal number of
unrelated samples, it lacks robustness in locality, which our infusing
mechanism effectively addresses.

4.3 Infuser Analysis
To delve deeper into the infusing mechanism, we visualize its values
on the test set. As shown in Fig. 4, we display the infusing scores
for both original known and unknown samples. Our observation is
that infusing scores are lower on known samples, helping to block
interfering information and thus mitigating knowledge forgetting.

4.4 Case Study
To intuitively understand the effectiveness of our framework, we
compare the prediction score distributions over candidate choices
from the vanilla LLaMa-2, LoRA, and our InfuserKI in two cases.
Fig. 5 (a) shows that LLaMa-2, which initially gives incorrect an-
swers, can provide correct answers after applying our InfuserKI and
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Figure 4: Infusing Scores for Known vs. Unknown Samples.

What procedure is performed on the Process Mastoideus? 
(A) Epithelial debris of mastoid cavity (finding) 
(B) Congenital anomaly of basioccipital bone (disorder) 
(C) Repair of mastoid antrum or cavity (procedure)
(D) Finding of moistness of mastoid cavity (finding)

LLaMa: 
A 5e-5 B 1e-4 
*C 0.999 D 1e-4 

LoRA: 
A 0.02 B 1e-5 
*C 0.007  D 0.97 

InfuserKI: 
A 3e-6 B 1e-7 
*C 0.998 D 0.001 

What diagnosis is associated with the finding site of Sutura cranii? 
(A) Discharging mastoid cavity (finding) 
(B) Congenital anomaly of basioccipital bone (disorder) 
(C) Swelling over mastoid (finding) 
(D) Overlapping cranial sutures (finding)

LLaMa: 
A 3e-7 B 0.999 
C 3e-7   *D 3e-7 

LoRA: 
A 3e-5 B 2e-5 
C 2e-5   *D 0.999 

InfuserKI: 
A 1e-6 B 6e-7 
C 3e-6   *D 0.999 

(a) LoRA and InfuserKI successfully inject knowledge into LLaMa. 

(b) LoRA forgets knowledge LLaMa knows and InfuserKI remembers.

Figure 5: Illustration of Infuser-Guided Knowledge Integration
with less forgetting.
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LoRA. However, LoRA induces forgetting for the second case, as
depicted in Fig. 5 (b) while InfuserKI retains the knowledge.

5 CONCLUSION
In this study, we tackle a novel problem of integrating new knowl-
edge from KGs into LLMs without affecting existing knowledge. We
introduce the Infuser-guided Knowledge Integration framework, de-
signed to selectively add new information to LLMs, minimizing the
impact on prior knowledge and preventing catastrophic forgetting.

6 APPENDIX

I need five question-answer templates to analyze relationships in
triplets formatted as <SUBJECT, RELATION, OBJECT>, focus-
ing on the relation {RELATION}. Answers should be either the
[OBJECT] entity or a yes/no response. Use placeholders [SUB-
JECT] and [OBJECT] to denote where the subject and object
entities will be inserted.
Context is provided by the following examples:
{EXAMPLE TRIPLETS}
Please create five unique question-answer templates, formatted as
a JSON string. For clarity, the output should follow this format:
{ ‘rel’: { RELATION },
‘template#1’: ‘[Question-answer template 1]’,
‘template#2’: ‘[Question-answer template 2]’,
‘template#3’: ‘[Question-answer template 3]’,
‘template#4’: ‘[Question-answer template 4]’,
‘template#5’: ‘[Question-answer template 5]’,
‘memo’: ‘[Additional memo or notes]’ }
Note: ONLY OUTPUT A JSON STRING, NO ANY OTHER
CONTENT.
Output: <Your generated JSON string>

Table 2: Prompt to GPT-4 to generate QA templates.

Below is an instruction that describes a task. Write a response
that appropriately completes the request.
### Instruction: {instruction}

### Response:
Table 3: Prompt to LLMs to answer MCQA.

6.1 Template Prompts and MCQA Construction
To facilitate an effective comparison between long-form answers
from LLMs and standard answers for open-ended questions, we
utilize a multiple-choice format, as detailed in Table 2. This format
comprises a correct answer alongside three distractors. The first
distractor is chosen for its minimal edit distance to the head entity,
while the remaining two are randomly selected from a set of ten
candidates based on their edit distance to the correct answer. Sub-
sequently, these choices are randomized and presented as options
(A), (B), (C), and (D) alongside the question, allowing for a precise
assessment of LLMs’ knowledge in specific domains.

6.2 Knowledge Graphs and Datasets
UMLS [2]: The Unified Medical Language System (UMLS) knowl-
edge graph, developed by the US National Library of Medicine,
integrates over 2 million terms for nearly 900,000 concepts from
more than 60 biomedical vocabularies. These include the NCBI
taxonomy, Gene Ontology, and Medical Subject Headings (MeSH),
along with 12 million concept relations. For testing, we employ the
PubMedQA dataset [15], a biomedical QA dataset derived from
PubMed abstracts, featuring Yes/No/Maybe questions alongside
context, as highlighted in [37].

6.3 Three Evaluation Properties
Following [14], the enhanced LLM should meet these properties:

Property 1, Reliability: The enhanced model 𝑝′
𝜃

incorporates
knowledge previously unknown to 𝑝𝜃 as

𝑝′
𝜃
(𝑥) = 𝑦 if 𝑝𝜃 (𝑥) ≠ 𝑦 . (9)

Reliability is quantified using the Newly-learned Rate (NR) in our
work.

Property 2, Locality: Knowledge integration should be localized
and precise, ensuring the fine-tuned model 𝑝′

𝜃
retains accuracy on

T𝑘𝑛𝑜𝑤𝑛 , the knowledge previously known to 𝑝𝜃 as

𝑝′
𝜃
(𝑥) = 𝑦 if 𝑝𝜃 (𝑥) = 𝑦 . (10)

Here, this property is measured by the Remembering Rate (RR),
which indicates the accuracy of the previously acquired knowledge.

Property 3, Generality: For any unknown sample 𝑥 , let E𝑥 =

{𝑥 ′ |𝑦𝑥 ′ = 𝑦𝑥 } denote a set of equivalent inputs. The model 𝑝′
𝜃

should
correctly answer all instances 𝑥 ′ ∈ E𝑥 as

∀𝑥 ′ ∈ E𝑥 , 𝑝′𝜃 (𝑥
′) = 𝑦 . (11)

In this study, generality is assessed by averaging F1 scores (F1_Unseen)
across three unseen templates during training as well as performance
on downstream tasks.
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