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ABSTRACT
This study presents an approach that uses large language models
such as GPT-4 to generate usage policies in the W3C Open Dig-
ital Rights Language ODRL automatically from natural language
instructions. Our approach uses the ODRL ontology and its docu-
mentation as a central part of the prompt. Our research hypothesis
is that a curated version of existing ontology documentation will
better guide policy generation. We present various heuristics for
adapting theODRL ontology and its documentation to guide an end-
to-end KG construction process. We evaluate our approach in the
context of dataspaces, i.e., distributed infrastructures for trustwor-
thy data exchange between multiple participating organizations for
the cultural domain. We created a benchmark consisting of 12 use
cases of varying complexity. Our evaluation shows excellent results
with up to 91.95% accuracy in the resulting knowledge graph.
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1 INTRODUCTION
The data economy increasingly relies on dataspaces, which are dis-
tributed infrastructures for data exchange among multiple partici-
pating organizations based on data sovereignty and interoperability
principles. To achieve interoperability in dataspaces, initiatives such
as the International Data Spaces Association (IDSA) [3] and the
Gaia-X European Association for Data and Cloud strongly rely on
Semantic Web technologies. Semantic Web technologies are not
easily accessible to non-technical users – this problem also holds in
dataspaces. The specifications of both IDSA and Gaia-X rely on the
W3C Open Digital Rights Language (ODRL) to describe the usage
policies of assets. Formulating usage policies in ODRL requires fa-
miliarity with the RDF graph data model, its serializations, and the
ODRL concepts. This requirement has become a significant entry
barrier with the adoption of dataspaces in highly digitalized sectors
such as car manufacturing, transportation, and the cultural sector.
For example, to create the ODRL policy from the instruction, “Paint-
ing 𝑋 from Museum𝑀 is authorized for display within Germany
but prohibited within the USA”, a domain expert is required to
know all the terminology from ODRL, including Asset, Permission,
Constraint, etc.

The ODRL version 2.2, a W3C recommendation since February
2018 [15], is an ontology for expressing rights over physical or
digital goods. ODRL enables owners and consumers to effectively
express the terms and obligations governing digital asset access
and use. We show a high-level overview of the ODRL information
model in Figure 1. The main class of the Core Vocabulary is Policy,
which acts as a container for Rules. A Set serves as the default
subclass of Policy for conveying a Rule over an Asset to define
general terms of usage without specific Constraint or Duty. An
Offer, as a subclass of Policy in the Core Model, describes the rules
presented by the assigning parties and specifies the conditions for
the recipient party of these rules. An Agreement is a subclass of
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Figure 1: Our method takes a natural language description of a usage policy as input. Using an LLM, a curated description of the
ODRL ontology and associated SHACL shapes, we generate a KG that corresponds to the ODRL representation of the described
policy.

Policy in the core model, which encompasses all terms governing
the usage agreement between an Assigner (the party that proposes
the policy statements) and an Assignee (the party that receives
the policy statements) regarding an Asset. A Permission specifies
Actions over an Asset. Permissions can also be linked with a duty,
especially when the action is obligatory. In contrast to permissions,
Prohibitions restrict specific actions.

To alleviate the barrier of familiarity with ODRL and Semantic
Web technologies for creating usage policies in dataspaces, we con-
tribute with an end-to-end approach that generates usage policies
in ODRL directly from natural language instructions given by an
application domain expert. Our approach employs Large Language
Models (LLMs) combined with a hand-crafted ontology descrip-
tion based on the ODRL specification. We equip our approach with
a self-correction component that evaluates the generated output
and applies rules. We evaluate our approach with GPT-3.5-turbo,
GPT-4, and GPT-4o on twelve realistic use cases from the cultural
domain, with increasing complexity, about the described usage per-
missions. We rely on SHACL (Shapes Constraint Language [10])
shapes to perform the evaluation from the syntax and semantic
perspective. Our results show a promising path in ontology-guided
KG generation.

2 RELATEDWORK
Formally a knowledge graph KG is defined as a tuple given by
KG = (E,R,T +) where E denotes the set of all vertices in the
graph representing entities, R is the set of edges representing rela-
tions, and T + ⊆ E × R × E is a set of all KG triples [13]. The task
of KG construction can be defined as, given unstructured sources
𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛), a model 𝑀 being trained to approximate the

function 𝐹 (𝑆) → KG [17]. Traditionally, KG construction com-
prises several tasks, namely Name Entity Recognition (NER) [9],
Relation Extraction (RE) [16], Entity Linking (EL) [14] and Coref-
erence Resolution (CR) [12]. Early, the construction of knowledge
graphs relied on a pipeline architecture and tools to effectively
create and incrementally update a knowledge graph [8]. With the
advent of deep learning approaches, each of these tools was further
improved [18]. However, in recent years, Large Language Models
(LLMs) have caused a paradigm shift in Natural Language Pro-
cessing (NLP) by creating generalist agents [2]. The remarkable
properties of LLMs now enable end-to-end KG construction. Early
attempts included BERT style models [4] to extract entities and
associated relations [11], whereas Guo et al. [6] propose end-to-end
knowledge graph construction with BERT. The work by Han et
al. [7] aligns with our work, using a larger LLM (GPT-4) for KG con-
struction. However, to correct errors in the previously generated
knowledge graph, they use a small fine-tuning LLM (T5). While
more efficient during inference, this also poses the method’s main
drawback due to the need for labeled data that might be unavailable.

3 METHOD
The KG construction process begins by developing an LLM Guid-
ance Template (LGT )1, a framework for guiding the LLM-based
KG construction. We provide a Task Description (TD) in natural
language with the specific requirements and constraints for the
desired ODRL. The LLM then uses the LGT and TD to construct
an ODRL KG end-to-end. After generating the ODRL knowledge
graph, our approach incorporates a Self-Correction Model (SCM)

1The LLM guidance templates used in this study can be found in the templates directory
on GitHub.
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to refine the generated KG. The SCM utilizes predefined rules to
correct inconsistencies and errors within the KG, resulting in a
refined ODRL knowledge graph. Figure 2 illustrates the complete
workflow of our approach, where we explain the process of gener-
ating the ODRL and subsequently refining it using the SCM . Now,
we describe each module in detail.

3.1 Ontology-Guided KG Construction
From the perspective of computer science, An ontology is a formal,
explicit specification of a shared conceptualization [5]. The 𝐿𝐺𝑇
in this approach is based on the ODRL version 2.2 ontology2 This
ontology defines ODRL classes, core concepts, and includes vari-
ous OWL axioms (e.g., domain, range, and others) that represent
relationships between classes and properties. The ontology uses
SKOS3 annotations (skos:definition, skos:note, rdfs:label)
for metadata, conceptual definitions, and labels. We pass this on-
tology directly to the LLM, leveraging both its formal structure
and human-readable annotations. The LLM then interprets this
information to generate an ODRL KG.
Relying solely on theODRL ontology challenges LLMs in accurately
predicting complex KGs, especially with multiple constraints (e.g.,
date, time, location, special conditions). LLMs may misinterpret
ontology elements, leading to errors such as:

The LLM-generated ODRL policies often exhibit structural mis-
understandings of the ODRL ontology. A critical issue is the misuse
of class instances within the odrl:Constraint structure. For ex-
ample, the LLM might incorrectly use odrl:use (an odrl:Action
instance) as the odrl:leftOperand of a Constraint, where an
odrl:LeftOperand instance is required. This error goes beyond
simple property value mismatches. It represents a fundamental mis-
interpretation of ODRL class relationships and the specific structure
of the odrl:Constraint class. Such mistakes can lead to logically
inconsistent and structurally invalid ODRL policies.
Another significant issue is the introduction of undefined properties.
LLMs, in their attempt to generate coherent policies, sometimes
employ synonyms or related concepts that are not officially de-
fined in the ODRL ontology. A prime example of this is the use
of odrl:location in place of the standard odrl:spatial prop-
erty. While odrl:location might seem intuitively correct and
semantically appropriate, it is not a part of the official ODRL vo-
cabulary. This seemingly minor deviation can lead to invalid policy
expressions, as ODRL processors and enforcement mechanisms are
designed to work with a specific set of predefined terms. Such un-
defined properties, despite their apparent semantic relevance, can
render the entire policy uninterpretable within the ODRL frame-
work, highlighting the need for strict adherence to the standardized
ODRL vocabulary in policy generation.
These errors lead to inconsistencies and misalignments with the
ODRL standard. To address these issues, we enhance the LGT with
additional context about ODRL syntax and semantics. This enrich-
ment aids LLMs in better distinguishing between various data types
and object properties within the ontology, resulting in more accu-
rate ODRL policy generation.

2https://www.w3.org/ns/odrl/2/ODRL22.ttl
3https://www.w3.org/2004/02/skos/

These errors cause inconsistencies and misalignments with the
ODRL standard. To mitigate these issues, we enrich the LGT with
additional context about ODRL syntax and semantics, aiding LLMs
in distinguishing between various data types and object properties
within the ontology.

3.2 Ontology, Syntax, Semantics, and Examples
(𝑂𝑆𝐸𝑆) Insights

We translate the structured ODRL ontology into plain text, incorpo-
rating syntactic and semantic aspects to guide the LLM. However,
directly importing the text of the ODRL W3C recommendation4
into the LGT file presents a significant challenge. The main issue
lies in the clarity guidance. The recommendations often contain
lengthy explanations and duplicated information, leading to confu-
sion and hallucinations. In response to these challenges, we under-
take a process of distillation [1], extracting essential information
from the ODRL ontology and recommendations. As part of this
distillation process, we have created guidelines inside the LGT
file for the main classes of the ODRL information model and their
properties, detailing how they should be utilized by the LLM. This
distilled information is then organized into three key dimensions
within the LGT file, considering three main aspects: Firstly, we
address ODRL’s syntactic interpretation, the syntactic structure
defines how its main entities are aligned and how they should be
used. Secondly, we consider ODRL Semantics: ODRL odrl:Duty in-
stances can represent obligations when linked to odrl:Policy via
odrl:obligation or conditions for permission activation when
linked to odrl:Permission via odrl:duty.

Finally, integrated ODRL examples in the LGT provide crucial
practical guidance for policy implementation, significantly aiding
LLMs in understanding and selecting appropriate relations for the
output. These examples serve several key functions in enhancing
the LLM’s ability to generate accurate and compliant ODRL policies:
These carefully curated examples in the LGT equip LLMs with a
rich set of patterns and templates, enabling them to recognize and
replicate valid ODRL structures. This significantly improves their
ability to generate policies that are not only syntactically correct
but also semantically meaningful and aligned with ODRL standards.
The examples serve as a practical reference, bridging the gap be-
tween abstract ODRL concepts and their concrete implementation
in policy formulation.

LGT guides the LLM to generate the ODRL KG by solving tasks.
Separate LGTs are established for each ODRL type (Agreement, Rule,
Offer), providing guidance for accurate results. Despite careful de-
sign, there may be inaccuracies or discrepancies, including syntactic
errors and semantic inconsistencies, in the output generated by
LLM. Therefore, we apply a third self-correction model.

3.3 ODRL Self-Correction Model
For ODRL self-correction, we establish 175 rules for Agreement, 16
for Offer, and ODRL Rule. These rules, termed correction rules, are
derived from the ODRL W3C recommendation and ontology rela-
tions, ensuring alignment with the official ODRL specification and
leveraging the semantic structure defined in the ontology. ODRL

4https://www.w3.org/TR/odrl-model/
5ODRL self-correction rules
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Figure 2: Approach. The LLM Guidance Template (LGT ) comprises two modules, i.e., the ODRL ontology in Turtle serialization
and contextual insights in PDF format. KG is constructed by passing Task Description (TD) and the LGT as input to the LLM.
Next, the Self-correction Model (SCM) refines the generated KG by providing the TD, the first version of the KG, and the ODRL
Self-Correction Rules (SCR) as input for the LLM to produce the refined KG.

Self-Correction Rules (SCR), rules are expressed in human-readable
language, which allows for accurate interpretation and applica-
tion by the LLM. The inputs include the TD along with it resulting
ODRL KG, as has been detailed previously in section 3.1, and the
SCR. These inputs are then passed to the LLM.We have two options
for applying self-correction. The first option is to define each rule
separately and iterate over them. The second option is to consoli-
date all rules into one prompt and then pass it to the LLM. Although
this method is less expensive than the first option, it may slightly
compromise accuracy due to the large text processing required
by the LLM. The SHACL violation messages alone do not effec-
tively guide the LLM to produce KG correction. This is due to the
stateless nature of LLMs, which do not retain memory of previous
interactions or learn from individual correction attempts. As such,
simply passing SHACL violation messages back to the LLM does
not guarantee improved KG. The LLM compares the ODRL 𝐾𝐺
policy with the 𝑆𝐶𝑅. If any inconsistencies are detected, the LLM
makes adjustments to ensure compliance with the 𝑆𝐶𝑅. This results
in a refined ODRL 𝐾𝐺 , as illustrated in Figure 2. Unlike SHACL
shapes, which primarily detect violations without modifying the
𝐾𝐺 , the LLM can autonomously refine the KG based on detected
rule violations.

4 EVALUATION
Evaluating outputs from LLMs is crucial due to their probabilistic
nature. Unlike deterministic systems, LLMs may generate varying
outputs for the same task, as LLMs may still generate probabilis-
tic outputs even when provided with factual data. We conducted
a comprehensive set of 108 experiments to evaluate the perfor-
mance of three different LLM models: GPT-3.5-turbo, GPT-4, and
GPT-4o. For each use case, we employed three different methodolo-
gies: Ontology-Guided, OSES Insights, and Refinement, resulting
in 36 experiments per model. The experiments aimed to assess the
models’ capabilities in managing and enforcing digital rights.

Dataset: Inspired by the context of the project Datenraum Kul-
tur(DRK)7, We designed a dataset of twelve different use cases.8

7https://datenraum-kultur.fit.fraunhofer.de/
8The use cases can be found in the YAML file on GitHub.

These use cases represent tasks defined in plain text, designed to
prompt LLMs to generate ODRL KGs. These use cases are derived
from real scenarios in the context of the DRK and encapsulate
different criteria for determining the appropriate application of
policies to assets where digital rights need to be managed and
enforced in the cultural domain. Each use case serves as a task
description for the LLM. The dataset includes 4 Agreement, 5 Offer
and 3 Set of type ODRL Policy. Case 1, illustrated below, demon-
strates a typical scenario for ODRL policy generation. This example
policy regulates access to the ShowTimesAPI’ dataAPI managed
by DE_Staatstheater_Augsburg, a German cultural organization.
The policy’s main objective is to control access to valuable cultural
assets stored in the dataAPI. Access is restricted to subscribers such
as Regional Newspaper’, Culture Research Institute’, and Cultural
Platform Bavaria’. Furthermore, access is limited to users located
in Germany, and usage rights expire on May 10, 2025.

Criteria Definition and Constraint Establishment: Criteria
𝐶1–𝐶9 Table 1 are defined for each use case based on the W3C
ODRL recommendation, focusing on both semantic and syntactic
representations. Each criterion sets expectations for an ODRL rep-
resentation, ensuring that the selected use cases comply with both
the structural and content constraints necessary for effective digital
rights management. The next step is mapping to SHACL constraints
for validation.

SHACL Shape Creation: Each criterion is translated into a
SHACL shape with associated constraints generated for this study9.
This constraint encompasses five shapes: PolicyShape, Permissi
onShape, PartyShape, AssetShape, and ConstraintShape collec-
tively evaluate 22 ranges of properties for Agreement, 20 for Offer,
and 16 for Asset policy types. SHACL shapes weremanually crafted
to reflect the specific requirements of ODRL policies. These shapes
define constraints that valid ODRL policies must satisfy, including
structural integrity (e.g., presence of required elements), proper
use of ODRL vocabulary, correct relationships between policy com-
ponents, and adherence to data type specifications. The manual
creation of these shapes allowed for precise control over the vali-
dation criteria, ensuring that all nuances of ODRL policy structure
9SHACL shapes for ODRL KGs evaluation
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Table 1: ODRL Criteria and Violations

Name Assertion SHACL Shape
𝐶1: odrl:uid Instances of classes Policy, Asset, Party, and ConstraintMUST be associated

with an (odrl:uid). This ensures unique identification of ODRL entities.
PolicyShape

𝐶2: Data type spec-
ification

MUST explicitly specify the corresponding XML Schema Definition (XSD) data
type. This ensures proper data validation and interpretation.

All Shapes

𝐶3: Meta info MUST include mandatory meta-information: dc:creator, dc:title,
dc:description, and dc:issued. These provide essential context for the
policy.

PolicyShape

𝐶4: Function Offer MUST have one odrl:assigner of type Party. Agreement MUST have
one odrl:assigner and odrl:assignee of type Party. This defines the parties
involved in the policy.

PartyShape

𝐶5: Relation Policy MUST have one odrl:target property with an object of type Asset.
This specifies the asset to which the policy applies.

AssetShape

𝐶6: Action Policy MUST have one odrl:action property of type Action. This defines the
permitted, prohibited, or obligated action on the asset.

PermissionShape

𝐶7: Rule Policy MUST contain at least one rule specifying actions on Assets, which
can be Permission, Prohibition, or Obligation. Rules are the core of ODRL
policies.

PolicyShape

𝐶8: Constraint RuleConstraintMUST have properties leftOperand (LeftOperand), operator
of type (Operator), and rightOperand (Literal, IRI, or RightOperand). These
define the conditions under which a rule applies.

ConstraintShape

𝐶9: ODRL Exten-
sion

New elements introduced by LLMMUST either be explicitly defined in ODRL
or adhere to the ODRL Profile Mechanism.6This ensures compatibility with the
ODRL standard.

All shapes

Figure 3: Figure 3 illustrates performance across 12 use cases for GPT-3.5-turbo, GPT-4, and GPT-4o. LLMs learn progressively
from ontology input, with improved context and examples enhancing performance. The Refinement method, combining
ontology guidance and self-correction, consistently achieves the highest scores across all models and use cases, demonstrating
its effectiveness in generating accurate ODRL policies.
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were captured. This hand-crafted approach enabled us to tailor the
shapes to the specific requirements of our use cases and the ODRL
standard.

Assignment of Scores:
The evaluation of our generated ODRL policies involves a com-

prehensive scoring system based on SHACL validation. Our scoring
mechanism is binary: each Focus Node and property shape within
the data graph is evaluated against the corresponding SHACL shape,
receiving a score of 1 if it fully satisfies the SHACL shape constraints,
and 0 if it fails to meet one constraints. This granular approach
allows for a detailed assessment of each component of the ODRL
policy. Evaluation Tools and Process:

For the evaluation process, we primarily utilized the SHACL
Playground10, an online tool that provided a user-friendly interface
for testing and visualization of SHACL validation results. This
tool allowed us to input our manually crafted SHACL shapes and
the generated ODRL policies, providing immediate feedback on
compliance with the defined constraints. The SHACL Playground
facilitated a thorough examination of each policy, highlighting
any violations of the SHACL shapes and allowing us to assess the
structural and semantic correctness of the generated ODRL policies
across different use cases and LLM models.

Aggregation and Analysis:
After evaluating individual use cases, we aggregated the re-

sults to provide a comprehensive overview. Scores were totaled
for each approach (e.g., basic generation, ontology-guided, refine-
ment), performance was compared across different LLM models
(GPT-3.5-turbo, GPT-4, GPT-4o), and trends and patterns in policy
generation accuracy were identified. The aggregated scores serve
as key metrics for assessing the quality of generated ODRL policies.
Higher scores indicate greater accuracy and better adherence to
ODRL standards, reflecting the precision of policy representation
for each use case. Comparative analysis of scores helps identify the
most effective approaches and models for ODRL policy generation.

Result: In the Ontology-Guided approach, the LLM faced chal-
lenges in extracting information solely from ODRL ontology. The
large size compounded these challenges. Without the assistance
of real ODRL examples, the LLM struggled to accurately predict
the ODRL Figure 3. However, in the 𝑂𝑆𝐸𝑆 Insights approach, the
ODRL 𝐾𝐺 is enhanced with properties and relations. By formu-
lating the ontology in text and providing semantic, syntactic, and
real examples, the guidance provided to the LLM is improved. Re-
fined ODRL KG quality improves through self-correction rules11
targeting crucial omitted properties. This iterative process enhances
KG completeness and accuracy, with effectiveness highly depen-
dent on the initial KG generation quality. Initially, we ran each
use case once and scored the output as the first exploration. the
results indicate varying degrees of performance across the LLM
variants and methodologies, with GPT-4 and GPT-4o exhibiting
similar performance patterns across the use cases.

This Accuracy formula as shown in Equation 1 allows us to
quantify the performance of our LLM-based approach in generating
ODRL policies. Each correctly generated element of the policy
contributes to the total obtained score (𝑅), while the total possible

10SHACL Playground: https://shacl.org/playground/
11https://github.com/Daham-Mustaf/LLM4ODRL/blob/main/correction_report.py

score (𝑇 ) represents the number of elements required for a fully
compliant ODRL policy. By applying this formula to our use cases,
we can effectively measure and compare the accuracy of different
approaches and models in ODRL policy generation. The formula is
defined as follows:

Accuracy =

∑
𝑅∑
𝑇

× 100% (1)

where:
• 𝑅: Total obtained score
• 𝑇 : Total possible score

Example calculation for Use Case 1 (with refinement):

217
236

× 100% ≈ 91.95%

5 CONCLUSIONS
This work proposes a novel methodology for generating KGs from
textual data using an LLM. We demonstrate that interpreting the
ontology in plain text significantly boosts LLM accuracy. The LLM
can compare KGs with textual predefined rules presented in human-
readable text and refine the results. This capability to refine KGs
underscores the advantages of employing LLM in KG construc-
tion. One limitation of our current work is that it is evaluated on
using the ODRL ontology. However, our approach is generic and
can be extended to diverse ontologies. In our current methodology,
𝐿𝐺𝑇 guidelines for KG construction (section 3.1) and selfcorrection
rules (section 3.3) have been derived and formulated from the W3C
Recommendation and ODRL ontology, which involves manual in-
terpretation and analysis. A potential area for future work could
be to automate this task, e.g., by identifying and extracting the
most important parts of the ontology using a statistical analysis
of existing knowledge graphs that are built upon the ontology. An
LLM could be used to verbalize the remaining parts.
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