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ABSTRACT
Large Language Models (LLMs) are extensively utilized for extract-
ing key information from unstructured data to construct Knowledge
Graph (KG) due to their advanced language comprehension and
generation capabilities. However, the diversity in natural language
leads to varied relational expressions in the extracted triples for the
data with similar meanings, often necessitating substantial man-
ual annotation to ensure quality. We present a novel method that
employs an ontology to define domain-specific knowledge, thereby
guiding LLMs to extract more standardized triples. By constructing
Chain-of-Thought (CoT) prompts that emulate the human cogni-
tive process of understanding triple knowledge in unstructured
data, we guide the model to extract higher-quality triples. Our
approach significantly reduces the diversity of relational expres-
sions, lowering the difficulty and workload associated with building
domain-specific KG. Experiments conducted on the TekGen dataset
demonstrate that our method can markedly decrease the diversity
of relational expressions while preserving accuracy. We also discuss
potential future research directions.
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1 INTRODUCTION
Knowledge Graph (KG) have been widely applied in traditional
fields such as search engines [7], e-commerce [29], and social me-
dia [2, 23], expanded into multiple industries including finance [4],
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healthcare [33], and education [3]. KG is a knowledge base that
consists of three elements: head entities, tail entities, and the re-
lationships between them. Extracting these knowledge from un-
structured data is an important foundation for constructing KG.
Currently, commonly used knowledge extraction methods rely
on large amounts of annotated data and utilize deep learning al-
gorithms [11, 28] to achieve extraction. That is, given the types
of entities and relationships to be extracted, models are trained
through supervised learning to obtain specific entities and rela-
tionships. For instance, a classic algorithm for entity extraction
is BiLSTM+CRF [6], while representative algorithms for relation-
ship extraction include Convolutional Neural Network [17]. Such
methods rely heavily on extensive manual annotation, which is
labor-intensive. Additionally, when targeting specific domains, they
require domain expertise, further complicating the annotation pro-
cess. Although there are methods such as distant supervision [21],
and transfer learning [27] to alleviate the issue of limited annotated
data, their effectiveness remains imperfect for specific vertical do-
mains. Therefore, the advancement of domain-specific KG heavily
depends on the participation of industry experts, with data annota-
tion emerging as a significant obstacle to their progress.

Recently, Large Language Models (LLMs) have demonstrated
remarkable performance in tasks such as natural language under-
standing, text generation [1, 18]. These models leverage their deep
neural network architectures to capture complex patterns and im-
plicit relationships in language, thereby exhibiting immense poten-
tial in handling unstructured data. Through zero-shot learning [8],
LLMs can directly extract triple knowledge from unstructured data
based on instructions, without the need for further model training,
thus aiding in the construction of KG.

However, the diversity of natural language expressions leads to
instability in the output results of generative models. For example,
the text "Stuff Stephanie in the Incinerator (originally titled In
Deadly Heat) is a 1989 horror-comedy written and directed by Don
Nardo." describes the relationship between a movie and its director.
Different vocabulary such as "director" or "directed by" can be used
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to express this relationship. When using LLMs for triple extraction,
obtaining triples for similar sentences may result in variations,
such as [Stuff Stephanie in the Incinerator|directed_by|Don Nardo]
and [Stuff Stephanie in the Incinerator|director|Don Nardo]. When
constructing KG, it is necessary to align semantically equivalent but
differently expressed content, leading to certain errors that affect
the quality of the KG.

Additionally, LLMs may also extract many unnecessary triples
from unstructured data when building domain-specific KG, which
is often due to the model’s lack of understanding of domain knowl-
edge. Discrimination is required to filter out these triples, resulting
in additional workload during KG construction.

To address the aforementioned issues, we propose an innovative
approach that utilizes ontology [22] to guide large models with spe-
cialized knowledge and employs Chain-of-Thought (CoT) [25] to
mimic the human thought process of understanding triple knowl-
edge from unstructured data. We will use a simplified ontology
conceptual model as the basis, which focuses on providing domain
knowledge without involving complex ontology axioms. In our
method, we only include the mapping between entity types and re-
lationship types. This aims to guide LLMs to extract higher-quality
triples, thereby reducing the difficulty and workload of domain-
specific KG construction.

The proposed method integrates ontology into the triple extrac-
tion process, making it an integral part of the CoT prompts. This
ensures that the model’s reasoning and extraction steps are aligned
with the predefined ontology, guiding the model to extract triples
that conform to the specified domain knowledge. CoT prompts
direct the model through the extraction process in a step-by-step
manner, including entity discovery, relationship extraction, and
ontology alignment. The ontology serves as a reference throughout
the process, ensuring that the extracted triples adhere to the de-
fined entity types and relationships. This combined approach aims
to reduce the diversity of relational expressions in the extracted
triples and ensure their consistency with the predefined ontology,
making the knowledge graph construction process more efficient
and less reliant on manual annotation.

2 RELATEDWORK
In this section, we delve into the application of LLMs in KG con-
struction, exploring methodologies that incorporate ontology into
the construction process. We examine approaches leveraging the
zero-shot reasoning capabilities of LLMs and summarize the in-
sights gathered from these methods.

2.1 Applications of LLMs in Knowledge Graph
Construction

LLMs showed their great potential in various NLP tasks [16, 30].
In the field of KG construction, LLMs demonstrated significant
capabilities and broad potential in executing various construction
tasks [24]. For instance, the RECENT [11], by leveraging entity
types to limit candidate relations, showcased the effectiveness of
LLMs in KG construction. The KICGPT [26] combined LLMs with
a triadic-based KG completion retriever, providing a new solution
for the task of KG completion. Moreover, methods based on Ope-
nIE [13] used LLMs to construct KG, integrating syntactic structures

to more effectively represent knowledge within text, thus build-
ing richer and more coherent KGs. The GenKGC [28] transformed
KG completion into a sequence-to-sequence generation task and
utilized pre-trained language models for generation, achieving ex-
cellent performance in KG completion through relation-guided
and entity-aware hierarchical decoding. Grapher [14] constructed
KG through multi-stage design, using pretrained language models
and classification/generation models. The DREEAM [12] approach
aimed to improve evidence retrieval (ER) in document-level rela-
tion extraction (DocRE). DREEAM directly supervised the atten-
tion module of the DocRE system, focusing the model’s attention
on evidence sentences related to entity pairs, thereby enhancing
both relation extraction and evidence retrieval. Curriculum-RE [19]
proposed a curriculum learning-based sentence-level relation ex-
traction method, which divided data by difficulty and then learned
them in order of difficulty to improve the performance of relation
extraction. Some of above works limited the extraction scope of
the model by utilizing lists of entity types or relationships. This
approach, to some extent, enhanced the accuracy of information
extraction by focusing the model’s attention on specific entities or
relationships. However, a high-quality triple not only needed to
contain correct entities and relationships, but more importantly,
it should have ensured the correspondence between entities and
relationships, meaning entities and relationships matched each
other correctly. Additionally, the diversity of relational expressions
was also a direction that needed to be considered in the process
of information extraction, and these works that utilized LLMs for
automated KG construction did not address this issue.

2.2 Applications of ontology in Knowledge
Graph Construction

The ontology, as a comprehensive structural system, provided a so-
lution for the correspondence between the aforementioned entities
and relationships. The launch of the Text2KGBench benchmark [15]
provided an important platform for evaluating language models’
ability to generate KG that conformed to a given ontology from
text. The Extract-Define-Canonicalize method [32] used LLMs to
construct KG, employing open information extraction, ontology-
definition-based graph schema, and relation-definition-based graph
schema, as well as standardizing triples to eliminate redundancy
and ambiguity, thereby enhancing the efficiency and quality of KG
construction, essentially automating the process of expert annota-
tion. Although these works demonstrated the feasibility of ontology
application, they did not fully utilize the internal structure of the
ontology, especially in terms of the correspondence between enti-
ties and relationships. Ontologies typically included hierarchical
structures and relationships between entities, which could provide
deeper understanding and richer semantic representations. There is
currently no research focusing on gaining a thorough understand-
ing of the ontology while using LLMs to assist in the construction
of knowledge graphs.



2.3 Prompt engineering for Large Language
Models

Prompt engineering is a novel field that focused on creating and
refining prompts to maximize the effectiveness of LLMs across var-
ious applications and research areas [5, 20]. Generated knowledge
prompting consisted of generating knowledge from a language
model, then providing the knowledge as additional input when
answering a question [9]. Automatic prompt engineer (APE) [34]
was an automatic prompt generation method to improve the per-
formance of LLMs. The “CoT” prompting method [25] included
a series of intermediate reasoning steps in the prompts, assisting
language models in deriving final answers step by step. In complex
reasoning tasks such as mathematical problems, common-sense
reasoning, and symbolic reasoning, CoT prompts significantly im-
proved the performance of LLMs compared to standard prompts.
The zero-shot prompting technique [8] prompted chained thinking
by adding “Let’s think step by step” before each answer. The paper
showed that large-scale language models possessed underutilized
general zero-shot reasoning abilities, beyond just few-shot learning
capabilities. This provided important insights into the advanced
multi-task zero-shot cognitive abilities hidden within language
models [10].

These research findings clearly indicated that using LLMs for KG
construction was not only technically feasible but also held great
potential for improving construction efficiency and significantly
reducing labor costs [31]. In this process, ontology, as the core basis
for knowledge extraction and structuring, presented a promising
direction for development. The advanced natural language process-
ing capabilities of LLMs enabled them to automatically identify
and extract entities, relationships, and attributes from text, which
were key components in building KG. There was no related work
on using CoT prompts for LLMs applied to information extraction.

3 METHODOLOGY
In this section, we introduce our novel method which innovatively
applies ontology and CoT to information extraction. This method
leverages the synergistic powers of ontology and LLMs to enhance
the extraction of triples that adhere to predefined specifications.
Existing methods have demonstrated that ontologies can be used to
guide large language models in information extraction, but their un-
derstanding of the content of the ontologies is still insufficient. We
construct the process of triple extraction as a CoT prompt, and in-
tegrate the content of the ontology into this process. By employing
this method, we aim to decrease dependency on expert annotation
during the KG construction phase, thereby streamlining the KG
construction process and ensuring the integrity and precision of
the captured knowledge.

3.1 Framework
Our approach utilizes CoT and ontology, which steers the model
through the triple extraction process. Figure 1 contrasts our pro-
posed methodological framework with the conventional approach
that relies exclusively on LLMs for triple extraction. The A part
of the figure illustrates the extraction of triples from natural lan-
guage text using LLMs alone. This method depends on LLMs to
comprehend natural language text and produce a set of triples. The

outcomes of this approach display a variety of expressions for each
relation, necessitating time-consuming manual annotation by ex-
perts and knowledge alignment for KG construction. The B part
of the figure denotes our proposed method. We use CoT prompts
to guide the model through the process of triple extraction and
integrate a set of ontology concepts into this process. The ontology
concepts here focus more on ensuring that the entities at both ends
of a relationship are within the list of entity types. This manifests in
the overall structure such that all entity relationship structures be-
longing to the domain should be subgraphs of the ontology graph
structure. This strategy yields more consistent and precise rela-
tional expressions, thus reducing the reliance on expert annotation
to a certain degree. In the following, we detail the key components
of our approach.

3.2 Ontology
In our approach, ontology serves a crucial role as a structured
form of knowledge representation. It not only defines entity types
within the domain with clarity but also describes the relationships
among them. This integrated framework constitutes an valuable
prior knowledge base, which both guides and confines the model’s
behavior in recognizing and extracting information for KG.

Through the integration of ontological knowledge, we are able
to embed rule-based prior knowledge into the model, which is es-
sential for managing unstructured data. This integration allows
the model to conduct identification and extraction within predeter-
mined frameworks, substantially narrowing the search space and
enabling the model to concentrate on the concepts and relationships
as defined by the ontology.

Ontologies should encompass entities and relationships with
a high degree of consistency, which means that in the process of
constructing a knowledge graph, the entities and their associations
should strictly adhere to the categories and relationship frameworks
defined in the ontology. Specifically, for any given relationship, the
entity types at both ends must strictly conform to the predefined
entity type list in the ontology. This consistency ensures the ac-
curacy and reliability of the knowledge graph because it follows a
clear, predefined conceptual model.

For example, if an ontology defines “book” and “author” as en-
tity types, and “writes” as a relationship between them, then any
“writes” relationship extracted in the knowledge graph should con-
nect two entities, one of which is a “book” and the other an “author”.
Any relationship that does not match this type of pairing would be
considered inconsistent with the ontology and could lead to errors
or confusion in the knowledge graph.

The ontology functions as a "filter" or "compass" for the model,
guiding it to recognize and extract pertinent entities and relation-
ships while ignoring extraneous information. Given that our re-
search focus is on the precise extraction of target triples from natu-
ral language texts in specific domains, we have narrowed our scope
to the correct correspondence between entities and relationships.
In this process, we have chosen not to extend our attention to the
more complex axiomatic levels within ontology, but instead to con-
centrate on ensuring the semantic accuracy of the extracted entities
and their corresponding relationships. Furthermore, the ontology
serves as an evaluation criterion for performing consistency checks



Figure 1: Comparison between our method Extraction with Thinking and the method using only LLMs to extract triples.

and quality assessments on the results produced by the model. By
contrasting the model’s outputs with the ontological specifications,
we can swiftly pinpoint and rectify any errors or discrepancies in
the extraction process.

3.3 CoT
We innovatively integrate the CoT method, which performs well in
the question-answering field, into the process of extracting triples
using LLMs. Our aim is to guide the model to extract triples step by
step, mainly including three parts: entity discovery, extracting rela-
tionships between entities, and corresponding with a predefined
ontology. The design philosophy of CoT is similar to the human
thought process. When humans extract triples that conform to the
ontology definition from natural language texts, they first identify
entities in the text, then analyze the relationships between these
entities, and finally correspond the identified entities and relation-
ships to the definitions in the ontology. Using models to complete
these three tasks separately would result in computational loss
during the intermediate process. CoT incorporates these three steps
into prompts, guiding LLMs (Large Language Models) to perform
information extraction in the same steps, thus simulating the hu-
man thought process. LLMs can better understand domain-specific
concepts and relationships, thereby extracting triples that more
closely align with the ontology definition.

We have developed CoT prompts that efficiently direct themodel’s
reasoning and extraction processes in line with predefined logical
structures. Our main objective is to extract triples that fulfill specific
criteria, rather than explicitly revealing the extraction procedure.
To this end, we employ a zero-shot prompting approach for the
CoT component, enabling the model to engage in reasoning and
produce outputs based on the given prompts, without requiring
any further training.

We utilize the ICL prompting format, which is an acronym for
Instruction, Context, and Learning. This format mimics a dialogue-
like architecture, crafting instructions for the system role, user
example inputs, and expected output examples. These elements are

conveyed in a conversational style as inputs to LLMs. This scenario-
based learning approach assists the model in comprehending task
requirements more thoroughly and produces high-quality outputs
in real-world applications.

The Figure 2 depicts the process we aim to use for guiding the
model’s reasoning through CoT and its integration with the on-
tology. Initially, the system role provides the Instruction, which
includes information about the ontology and the CoT process. In
the CoT section is where we design prompts to direct the model to
first recognize entities, then to discover relationships between these
entities within the sentence, and finally to align with the ontology’s
definitions. The Ontology section presents a collection of entities
and relationships within the domain. We express these relation-
ships using a triple format, where each relationship’s endpoints
correspond to entities from the entity list, thereby showcasing the
ontology’s overall structure. In the Example section, the User and
Expected Output roles are used to create a sample dialogue for triple
extraction within the domain, demonstrating the desired format
for the model’s output. This example only specifies the format re-
quirements for the output, excluding any content from the CoT. In
the Sentence section, the User role inputs a sentence. In the Think-
ing Process section, the LLMs engage in a step-by-step reasoning
process guided by the instructions and examples from the previous
sections. Ultimately, the LLMs outputs triples in the given format.

We aim for LLMs to present key information as concisely as
possible, specifically by displaying triples in the format "[Entity1 |
Relation | Entity2]". This format not only contains the fundamental
components of constructing a KG clearly but also reduce the rea-
soning process. Our objective is to have the model concentrate on
extracting essential information in this simplified output structure,
without the distraction of elaborate reasoning details. To moderate
the influence of example content on the model’s output, we employ
an invariant example strategy, using just a single example for each
domain. This implies that the example content remains consistent,
regardless of the type of relationship present in the input sentence.
The reason behind this approach is that in practical applications,



Figure 2: An example of CoT_Ontology

it’s unlikely to have an ideal example for every text extraction sce-
nario, and creating comprehensive examples can be labor-intensive.
Hence, we focus the extraction process more on the ontology and
the LLMs’ capabilities, rather than relying on examples tailored to
specific sentences. With the invariant example strategy, we seek to
decrease the model’s dependence on example content, prompting
it to draw more on its contextual understanding and application of
the ontology. This method not only enhances the model’s ability
to generalize across diverse domain data but also ensures more
precise extraction of the required triple information when dealing
with real-world data.

In summary, our method guides LLMs to efficiently and accu-
rately extract more specific relationships from unstructured data by

offering a simplified output format and a single example selection.
The deployment of this technique is anticipated to significantly
advance the automation of KG creation and to deliver robust knowl-
edge services across various sectors. Our vision is to realize the
automation and sophistication of KG construction through this
innovative approach, equipping industries with more detailed and
streamlined knowledge services.

4 EXPERIMENTS
In Section subsection 4.1, we detail the dataset employed for our
experiments. Section subsection 4.2 outlines the key experimental
parameters and setup. Section subsection 4.3 presents the assess-
ment of conventional metrics, encompassing Precision, Recall, and



F1 Score for relational tasks. Section subsection 4.4 delves into the
evaluation of the specificity in relational expression. Concludingly,
Section subsection 4.5 offers a thorough analysis and discussion of
the experimental outcomes.

4.1 Dataset
In the experimental segment of our research, we utilize the TekGen
dataset [15]. This dataset covers 10 distinct sub-domains, offering
a wealth of diversity. Crucially, it defines a comprehensive set of
ontologies and their associated relationships for each domain. In
such a scenario, our results might suffer from a lack of credibility.
The dataset is constructed through a specialized process: initially, a
predefined set of entity types and relationships are established, and
a collection of triples is created based on this framework. These
triples are then aligned with natural language paragraphs from
the corpus, thereby compiling the sentences that constitute the
dataset. Once sentences are identified, any other relationships in
the corpus connected to these sentences are scrutinized, and if
they belong to the intended ontology, they are integrated into the
dataset as well. To enhance the portability and generalizability of
our method across various domains, we don’t make any domain-
specific modifications to the dataset for our model. Furthermore,
since our approach does not require model training, we combine
the training and testing subsets of the dataset to create a unified
experimental dataset. We aim for this method to be applicable to
the automatic construction of domain-specific knowledge graphs
without the need for domain-specific training. The merged dataset’s
statistics are presented in Table 1.

The primary reason we choose the TekGen dataset is its pre-
defined simple ontology for each domain. The TekGen dataset
provides pre-defined entity types and relationship types for each
domain, which serves as a valuable benchmark and validation stan-
dard for our method. If we were to use another dataset, we would
need to define the types of entities and relationships within the
dataset ourselves. This would not only increase the amount of
preparatory work but could also lead to inconsistencies and biases
in the definitions, thus undermining the advantages of our method.
More importantly, the advantages of answers obtained under the
guidance of an ontology defined by ourselves are not fully con-
vincing. Due to the lack of authoritative and widely recognized
ontologies as a reference, we cannot be sure that the ontologies
we define can accurately reflect the knowledge and structure of
specific domains, thereby affecting the accuracy and reliability of
the extraction results.

4.2 Experiments Settings
All of our experiments were conducted on a pair of NVIDIA Geforce
RTX3090 24G graphics cards. Additionally, during the experimental
process, we observed a significant decrease in inference speed as the
dataset progressed, and in some cases, the systemwould even freeze
when dealing with particularly complex queries. Consequently, in
order to enhance the speed and efficiency of inference, we adopt the
vllm accelerated reasoning framework and integrate the powerful
ChatGLM3-6B 128K model for all experiments. The model has 6 bil-
lion parameters and can process complex text data. We choose the

128K context length model because we want the model to better un-
derstand the prompts of long context. When reasoning with models
with shorter context lengths, the ICL group always takes less time
than the Context group, indicating that models with shorter context
lengths understand Context format prompts less well than the ICL
group. We do not want such gaps to arise due to model capabilities.
Therefore, we choose to use a 128k context length model, which is
sufficiently large for both ICL format and Context format, reducing
the differences brought about by prompt length. In the process
of model generating triples, we use the beam_search algorithm,
which is a common sequence generation strategy that can explore
multiple possible output paths when generating text. We set the
number of output results to five times for subsequent evaluation, in
order to get more convincing scores. In the subsequent quantitative
indicators, the score of each sentence corresponds to the average
score of the 5 output results. In light of our aim to demonstrate
the potential advantages of reducing the diversity of relational ex-
pression through a series of meticulously designed experiments,
current experimental research on the TekGen dataset has solely
focused on accuracy as the measurement criterion. Moreover, these
studies exhibit significant discrepancies in terms of experimental
environment, model selection, parameter configuration, whether
fine-tuning is applied, and the specific content of the prompts. To
address this, we have decided to establish six groups of comparative
experiments under completely consistent environmental conditions.
This approach is intended to ensure the reliability and comparabil-
ity of the experimental results, thereby more deeply uncovering
the effectiveness of the method we propose.

• Context_base The prompt contains only the instruction
to extract triples.

• Context_Ontology The ontology concepts and relation-
ship list are added to the prompt.

• Context_CoT_Ontology A method combining CoT and
ontology.

• ICL_base The prompt contains only the instruction to
extract triples.

• ICL_Ontology The ontology concepts and relationship list
are added to the prompt.

• ICL_CoT_Ontology A method combining CoT and ontol-
ogy.

As Figure 3 shows, “context” refers to the input of instructions,
examples, and prior knowledge in a hole part to the model, with
“ICL” having been previously mentioned. We meticulously designed
the comparative experiments between the Context group and the
ICL group with the intention that: due to the additional computa-
tional overhead introduced by CoT_Ontology compared to tradi-
tional Ontology. To validate the practical effectiveness of the CoT
(Chain of Thought) mechanism, we adopted two different methods
to deliver prompts to the model while keeping the content of the
prompts consistent. Through this design of control experiments,
our aim is to highlight the key role played by the CoT and the
benefits it brings within the framework of our proposed method.
Additionally, in Section subsection 4.3 and subsection 4.4, we only
conduct internal comparisons in Context or ICL, while the inter-
group comparison between Context and ICL will be conducted in
Section subsection 4.5.



Table 1: Statistics on the number of ontologies, relationships, and sentences contained in various domains within the integrated
TekGen dataset

Type Movie Music Sport Book Military Computer Space Politics Nature Culture
Ontology 12 13 20 20 13 15 15 13 14 15
Relation 15 13 10 12 8 4 7 9 13 8
Sentence 1960 1571 1129 1271 528 524 468 489 1094 363

Figure 3: Example of Context Prompt

4.3 Traditional Evaluation
Firstly, we employ the conventional evaluation approach to quanti-
tatively assess the precision, recall, and F1 score of the extracted
triples in comparison to the dataset’s standard answers. Table 2
shows the indicators for each field in the Context group, while Ta-
ble 3 displays the indicators for each field in the ICL group. Across
all three metrics, the ICL_Ontology and ICL_CoT_Ontology groups
show superior performance to the ICL_Base group, suggesting that
the incorporation of ontology and CoT can significantly enhance
the precision of the information extraction process. Furthermore,
in the precision metric evaluation, the ICL_CoT_Ontology group
achieves a higher score than the ICL_Ontology group in eight do-
mains. In the recall metric evaluation, the ICL_CoT_Ontology group
outperforms the ICL_Ontology group in five domains. Similarly, in
the F1 score evaluation, the ICL_CoT_Ontology group achieves a
higher score than the ICL_Ontology group in seven domains. How-
ever, the trend does not hold for the Context group, which we will
examine further in section subsection 4.5. Our method, grounded in
ICL, demonstrates that our CoT approach can effectively enhance
the accuracy of triple extraction.

As previously mentioned, the constructionmethod of this dataset
doesn’t disambiguate pronouns in the sentences, which led to a
frequent occurrence of pronouns such as “The movie” or “The film”
within many sentences. When our model extracts information from
these sentences, it often fails to accurately identify the specific
entities that these pronouns represent. Consequently, the model
employing the CoT method tends to refrain from extracting rela-
tions that involve entities without clear references, leading to a
lower recall value for the CoT_Ontology group compared to the
Ontology group in certain domains.

Another trend is that, for both the Context and ICL groups, the
recall indicator scores across all 10 domains of the experiments are
higher than their corresponding precision scores. We meticulously
analyzed the model’s extraction results and the dataset construction
process to uncover some key insights.

In the dataset construction process, there is a scenario where
relationship expressions in the corpus fall outside the ontology’s
definition but can be mapped to relationships that are included in
the ontology. In these instances, the relationships are not incorpo-
rated into the dataset, resulting in a degree of incompleteness in
the dataset’s reference answers. This manifests in the experiment



Table 2: Statistics on Precision, Recall and F1 of Context Group. A means Base, B means Ontology, C means CoT_Ontology. The
bold numbers represent the best scores.

Type Precision Recall F1
A B C A B C A B C

movie 0.1301 0.3068 0.3062 0.1582 0.3279 0.3221 0.1428 0.3170 0.3140
music 0.1402 0.3040 0.3049 0.1842 0.3451 0.3422 0.1592 0.3232 0.3225
sport 0.1308 0.2379 0.2404 0.1522 0.2623 0.2613 0.1407 0.2495 0.2504
book 0.2457 0.2808 0.2776 0.3442 0.3235 0.3133 0.2867 0.3006 0.2944

military 0.2886 0.5275 0.5232 0.5278 0.6515 0.6459 0.3732 0.5829 0.5781
computer 0.3160 0.3697 0.3716 0.4641 0.5064 0.5073 0.3760 0.4274 0.4290
space 0.1746 0.5459 0.5378 0.3284 0.6895 0.6716 0.2280 0.6094 0.5973
politics 0.0232 0.1304 0.1319 0.0277 0.1383 0.1431 0.0253 0.1343 0.1373
nature 0.1205 0.2729 0.2657 0.1160 0.2763 0.2678 0.1182 0.2746 0.2668
culture 0.1086 0.3102 0.2883 0.1102 0.3102 0.2887 0.1094 0.3102 0.2885

Table 3: Statistics on Precision, Recall and F1 of ICL Group. A means Base, B means Ontology, C means CoT_Ontology. The bold
numbers represent the best scores.

Type Precision Recall F1
A B C A B C A B C

movie 0.1042 0.3484 0.3457 0.1709 0.5870 0.5734 0.1295 0.4372 0.4313
music 0.0920 0.2959 0.2949 0.1646 0.4963 0.4741 0.1181 0.3707 0.3637
sport 0.0465 0.2118 0.2155 0.0869 0.3918 0.3757 0.0606 0.2749 0.2739
book 0.1935 0.3150 0.3284 0.3727 0.5408 0.5501 0.2547 0.3982 0.4113

military 0.1946 0.4741 0.5088 0.4307 0.7965 0.7950 0.2680 0.5944 0.6205
computer 0.2609 0.3204 0.3346 0.4484 0.5719 0.5753 0.3299 0.4107 0.4231
space 0.1926 0.5117 0.5338 0.3323 0.7434 0.7449 0.2439 0.6061 0.6219
politics 0.0298 0.2687 0.2715 0.0430 0.3932 0.3975 0.0352 0.3192 0.3226
nature 0.0812 0.2174 0.2256 0.0793 0.3094 0.2981 0.0803 0.2554 0.2568
culture 0.0876 0.2928 0.3248 0.0876 0.2931 0.3251 0.0876 0.2930 0.3249

as a mismatch in granularity and direction between our model’s
output and the standard answers. During the experiment, since we
don’t employ approximate matching for each sentence, we provide
identical input for example content and prior knowledge across sen-
tences. This approach means that the model had to autonomously
identify and extract all relationships it perceived to exist, and then
map these to the relationship list we provided. Consequently, our
results exhibit a higher recall value compared to the precision value.

This further highlights the challenges in dataset construction
and answer annotation. Future work can focus on addressing these
issues to improve the overall performance of the model in the task
of triple relationship extraction.

4.4 Specificity of relationship expression
In this experiment, we focus on assessing the specificity of relation-
ship expressions extracted from the text. To thoroughly evaluate
this attribute, we employ two complementary metrics: the first
metric is the count of unique relationship types that the model
extracts for each domain dataset. This metric reflects the model’s
capability to consolidate various expressions of a single relation-
ship into a unified representation. The second metric is OC (Ontol-
ogy Conformance), which is calculated based on the relationships

defined within the ontology and the proportion of these relation-
ships that the model successfully extracts. This metric, inspired by
the TEXT2KGBENCH paper [15], indicates the model’s ability in
aligning the extracted relationships with those predefined in the
ontology. A decrease in the number of relationship types coupled
with an increase in the OC value suggests that the extracted rela-
tionship expressions are more precise and align more closely with
the ontology’s definitions.

4.4.1 Kinds of Relationship Expressions. The evaluation of the num-
ber of relationship expressions involves counting the total count
of unique relationship types across all five extraction results for
each sentence within every domain. The experimental findings
are detailed in Table 4. In both the Context and ICL groups, we
noted that the CoT_Ontology group markedly reduced the vari-
ety of relationship types in the extracted triples across the ten
domain datasets when compared to the base group, which lacks
any scope limitations or supplementary prompts. Specifically, the
Context_CoT_Ontology group exhibited a lower count of relation-
ship types in 8 out of the 10 domains when contrasted with the
corresponding domains in the Context_Ontology group. Similarly,
the ICL_CoT_Ontology group showed a reduction in the number of



relationship types in 6 domains when compared to the correspond-
ing domains in the ICL_Ontology group. These results indicate that
our method effectively decreases the diversity of relationship types
that the model extracts from triples.

4.4.2 OC. Merely reducing the number of relationship types is
insufficient. When constructing a KG with minimal manual anno-
tation, it is essential to have a higher number of relationships that
adhere to the ontology’s definitions. Consequently, we also com-
puted the OC (Ontology Conformance) metric, which quantifies the
ratio of relationship expressions within the extracted results that
align with the predefined ontology list, relative to the aggregate
number of extracted triples.

The experimental findings are depicted in Figure 4 and Figure 5.
Across each domain, whether in the Context group or the ICL group,
we observed that the CoT_Ontology group markedly enhanced the
OC value of the triples extracted from the ten domain datasets when
contrasted with the base group. The ICL_CoT_Ontology group out-
performed the corresponding domains in the ICL_Ontology group
in 8 out of the 10 domains. This suggests that, within the ICL
prompt framework, CoT is effective in understanding the ontology
and extracting relationships that are in line with the ontology’s
definitions. Additionally, we noted that the performance of the
Context_CoT_Ontology group surpassed that of the correspond-
ing domains in the Context_Ontology group in only 2 domains.
This indicates that CoT exhibits superior performance in the ICL
format prompt compared to when it is applied within the Con-
text format prompt. Further analysis of these results is provided in
section subsection 4.5.

4.5 Analysis
Our results reveal that the ICL group’s performance in evaluating
the specificity of relationship expressions is a little less robust com-
pared to the Context group, despite its significant advantages in
traditional metrics. To gain further insights, we examine a sample
of the model’s extraction results and conduct a thorough analysis
across all indicators. While the ICL group’s outcomes include new
relationship types that contribute to a lower OC value, the expres-
sion of relationships within other triples was superior to that of the
corresponding sentences in the Context group under equivalent
conditions. This suggests that the model demonstrates a degree
of autonomy but maintaining basic accuracy. Upon considering
the total number of relationship types, we note that although the
ICL_CoT_Ontology group had a slightly higher count compared to
the Context_CoT_Ontology group, the discrepancy in OC values
are minimal. This indicates that, under the ICL prompt format, the
model does extract some relationship types that deviate from the
ontology’s definitions, but this does not detract from the accurate
extraction of relationships that align with the ontology.

In the majority of domains, the traditional metrics for the Con-
text_CoT_Ontology group don’t not prove as effective as those for
the Context_Ontology group, a stark contrast to the performance
observed with ICL. This suggests that the CoT method under the
Context format did not yield the anticipated benefits. This outcome
validates our decision to construct CoT prompts within the ICL
framework. The rationale behind this is as follows: with ICL, in-
structions and examples are integrated into the model’s input as

dialogue history, signifying that the model processes and learns
information through successive interactions. In contrast, when us-
ing the Context format, instructions, examples, and other content
are fed into the model all at once, resulting in an excessively long
context that dilutes the potency of the reasoning chain. Within the
confines of CoT prompts and ontology, the model demonstrates
enhanced performance across a range of metrics. This discovery
highlights the significance of mimicking human interaction in the
learning process and offers a novel perspective for future research
endeavors in natural language processing.

When analyzing the performance of a group by comprehensively
considering all indicators, we found that in domains where accuracy
is better, the OC value is also higher, indicating that increasing the
specificity of relationship expression can effectively improve the
accuracy of the information extraction process.

In summary, in the process of extracting triples using LLMs, our
method can reduce the diversity of relationship expression while
ensuring a certain level of accuracy.

5 CONCLUSION AND FUTUREWORK
In this paper, our goal is to address the core challenge of extracting
KG triples from unstructured data, namely the diversity of rela-
tional expressions resulting from the variability of natural language
expressions. Our proposed approach leverages the advantages of
ontologies and CoT to guide LLMs in performing more consistent
and accurate triple extraction. By incorporating a clear system of
concepts and relational guidelines through the ontology framework,
our method not only ensures the consistency of the KG but also
enhances its semantic accuracy and clarity. The ontology serves
as a filter and guidebook for the model, focusing its attention on
relevant concepts and relationships while reducing the variety of
relational expressions in the extracted triples. Furthermore, the
innovative use of CoT has enabled the model to better understand
complex tasks and maintain logical consistency during the triple
extraction process. This form of guidance ensures that the model
adheres to the rules and standards set forth, resulting in a more
controlled and stable generation of KG triples.

In conclusion, our research contributes to the advancement of
KG construction by introducing a novel approach that combines
ontology and CoT. This work paves the way for more intelligent
and precise knowledge services across various industries, relying
less on manual annotation and moving towards more automated
and efficient construction of KG.

Based on the current approach, there are several directions for
future work that can further enhance the effectiveness and accuracy
of KG triple extraction using LLMs. These include:

• Standardized Dataset Construction Developing a more
standardized and comprehensive dataset is crucial for train-
ing and evaluating LLMs in KG triple extraction tasks. Fu-
ture work should focus on creating datasets that cover a
wide range of domains and include diverse natural language
expressions and complete and correct triples. This will en-
able LLMs to learn from a rich set of examples and improve
their ability to handle the diversity of relational expressions
in unstructured data.



Table 4: Statistics on the number of relationship types in 6 groups of experiments. The bold numbers represent the best scores.

Type Context ICL
base Ontology CoT_Ontology base Ontology CoT_Ontology

movie 664 209 212 1472 246 246
music 529 106 109 1161 136 126
sport 187 45 43 440 56 55
book 784 118 116 1308 118 105

military 221 38 37 539 27 28
computer 412 53 52 560 68 62
space 203 33 31 284 34 36
politics 294 40 38 490 86 71
nature 224 65 61 441 86 89
culture 151 72 63 202 34 37

Figure 4: OC Value Statistics of Context Group

• Advanced Ontology Representation Improving the way
ontologies are represented and integrated into LLMs can
significantly enhance their understanding of domain con-
cepts and relationships. Future work could explore more
sophisticated ontology representation techniques, such as
using graph neural networks or embedding methods, to
capture the complex interrelationships between concepts.
This will provide LLMs with a richer and more nuanced un-
derstanding of the ontology, enabling them to make more
informed decisions during the triple extraction process.

• Ontology-Aware Pre-training Pre-training LLMs on data
that is annotated with ontology information can help them
develop a better understanding of domain-specific concepts
and relationships. Future work could involve pre-training
LLMs on large-scale datasets that are annotated with on-
tology labels, allowing the models to learn the ontology
structure directly from the data. This will enable LLMs to

better recognize and extract KG triples that adhere to the
ontology guidelines.

• Evaluation and Benchmarking Establishing rigorous
evaluation criteria and benchmarks is crucial for assessing
the performance of KG extraction methods.

Future work should involve the development of comprehensive
datasets and metrics to accurately measure the quality and utility
of the extracted KG triples, rather than only evaluating the effec-
tiveness of entity extraction and relation extraction separately. By
addressing these areas of future work, we can continue to advance
the field of KG construction, making it more accessible, efficient,
and reliable for a wide range of applications.
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Figure 5: OC Value Statistics of ICL Group
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