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ABSTRACT
Automated knowledge curation for biomedical ontologies is key to
ensure that they remain comprehensive, high-quality and up-to-
date. In the era of foundational language models, this study aims
to compare and analyze three natural language processing (NLP)
paradigms for curation tasks: in-context learning (ICL), fine-tuning
(FT) and supervised learning (ML). Chemical Entities of Biologi-
cal Interest (ChEBI) database was used as an exemplar ontology,
on which three curation tasks were devised. GPT-4, GPT-3.5 and
BioGPT were utilized for ICL using three prompting strategies. Pub-
medBERT was chosen for the FT paradigm. For ML, six embedding
models were utilized for training Random Forest and Long-Short
Term Memory models. To assess different paradigms’ utilities in
different data availability scenarios, five different setups were con-
figured for assessing the effect on ML and FT performances. The
full datasets generated for curation tasks were task 1 (#Triples
620,386), task 2 (611,430) and task 3 (617,381), with a 50:50 positive
versus negative ratio. For ICL models, GPT-4 achieved best accu-
racy scores of 0.916, 0.766 and 0.874 for tasks 1-3 respectively. In a
head-on-head comparison, ML (trained on around 260,000 triples)
was more accurate than ICL in all tasks (accuracy differences: +.11,
+.22 and +.17). Fine-tuned PubmedBERT performed similarly to
best ML models in tasks 1 & 2 (F1 differences: -.014 and +.002),
but worse in task 3 (-.048). Simulation experiments showed both
ML and FT models deteriorated in smaller and higher-imbalanced
training data. When training data had 6,000 triples or fewer, GPT-
4 was superior to ML/FT models in tasks 1 and 3. However, ICL
never performed on par with the ML/FT in task 2. When prompted
properly, foundation models with ICL can be good assistants for
knowledge curation, however, clearly not yet to a level making ML
and FT paradigms obsolete. The latter two need good task-related

training data to outperform ICL. Notably, in such situations, the
ML paradigm only needs small pretrained embedding models and
much less computation.
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1 INTRODUCTION
Knowledge Graphs (KGs) [11, 24] are a novel paradigm for integrat-
ing and representing semantically networked datasets or knowledge
bases from highly heterogenous sources. They are well-suited to
the large and heterogeneous datasets common in the biomedical
domain [19]. Unsurprisingly, there is a large body of literature of
utilising KGs for biomedical purposes including automated diagno-
sis [15, 34], generation of radiology reports [38], and pharmaceutical
studies [1, 16, 36].
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KGs can suffer from sparsity and incompleteness [5], and also
require updating periodically as new information or knowledge be-
comes available. Manual KG curation is, however, time-consuming,
burdensome and impractical in settings where the pace of knowl-
edge generation is high. Automated knowledge graph enrichment
or refinement [25] is a subfield in graph-based machine learning, fo-
cused on correctly integrating new entities into existing knowledge
graphs [29] and predicting novel relationships between entities.
This can significantly enhance the efficiency of the curation pro-
cesss [13].

New knowledge and information are typically first presented
in free-text format, e.g., scientific literature [27], news articles and
social media [21]. Due to the nature of these sources, it is not sur-
prising to see Natural Language Processing (NLP) techniques [14]
play an instrumental role in the creation and curation of KGs by
automating effective information extraction at scale [9, 33, 35].

Powerful, transformer-based Large Language Models (LLMs)
have emerged in recent years [31, 32], significantly transforming
Natural Language Processing. Via task-agnostic, self-supervised
pre-training on vast corpora, these models learn lexical, syntactic,
and semantic structures. In particular, the emergence of founda-
tion models like GPT3.5/GPT4.0 and the open source LLMs (e.g.,
Llama2 [30], Mistral [12]) has had an undeniable impact on NLP
research. They are speeding up, or at least stimulating discussion
on, paradigm shifts from supervised learning to fine-tuning to
prompting/in-context learning [17], and from development of mod-
els specialised for a single function to versatile, general-purpose
models which can be applied to a wide array of tasks. In this state
of flux, for automated biomedical KG enrichment, it is sensible to
ask:

• Howdo these foundational LLMs perform in curating biomed-
ical knowledge, including differences between models and
effectiveness of various in-context learning strategies?

• Can smaller, domain-specific language models compete
with large, open domain state-of-the-art LLMs?
• Are supervised learning approaches truly obsolete in such

tasks?

This study aims to conduct a series of experiments for answer-
ing these questions. The Chemical Entities of Biological Interest
(ChEBI) database will be used for this focused study. ChEBI is one
example of knowledge graphs in the interdisciplinary field between
chemistry and biomedicine. It functions as both a database and an
ontology, housing information about chemical entities of biological
relevance, and contains a diverse array of curated data items [6, 7].
This resource finds extensive application across various domains,
including drug target identification [18, 28] and gene studies [2].
However, it is worth noting that in the case of ChEBI, the addition
of new entities and connections is a manual process [23], which
translates to a substantial investment of time and resources.

2 MATERIALS AND METHODS
A schematic representation of this work is provided in Figure 1.
The core (the box on the right of Figure 1) is a set of experiments to
evaluate three paradigms of applying NLP in automated knowledge
curation for the ChEBI KG: (1) in-context learning with pretrained

large language models; (2) fine-tuning a pretrained BERT (Bidi-
rectional Encoder Representations from Transformers [8]) model
with task-related training data; (3) supervised machine learning ap-
proaches using distributed representations. A diverse set of models
(depicted in the two-dimensional space on the left) was utilized in
this study, plotted in the space indicating their training corpus size
(x-axis) and domain relevance (y-axis). Models which underwent
further training on task related corpora are indicated in yellow.

Three types of enrichment taskswere proposed to assess themod-
els’ abilities in detecting different forms of ‘erroneous’ knowledge
(the top dashed-line box on the right of Figure 1). We also simulated
five scenarios where the size and imbalance (negative vs positive
data labels) of the training data vary (the bottom dashed-line box in
Figure 1). This is to assess how fine-tuning and supervised learning
approaches perform in different situations, which will in turn give
evidence on how to choose NLP paradigms, e.g., the settings where
foundation models may be most useful.

2.1 ChEBI database
The publicly available ChEBI knowledge graph1 was downloaded
in February 2022 for comparing different approaches in knowl-
edge graph enrichment tasks. We included data from all three sub-
ontologies and nine of the ten ChEBI relationship types. For sim-
plicity, the relationship ‘is conjugate acid of’, which is the inverse
relationship of ‘is conjugate base’, was removed.
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Figure 1: Architecture of study design. Pretrained distributed
representations and language models panel (top-left): X-axis
is the size of corpus for pretraining the models. Y-axis is
the relevance of the model pretraining corpus to the target
domain. The size of the shapes denotes the model size. (Note:
ratios are indicative only.) Three simulated knowledge cu-
ration tasks were devised, and different model adaptation
techniques proposed. Different difficulty settings were ad-
justed via modification of training data size and imbalance
ratio.

1https://www.ebi.ac.uk/chebi/downloadsForward.do
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2.2 Knowledge enrichment tasks
The ChEBI ontology is denoted as 𝐺 = (𝑉 ,𝑇 , 𝐿), where:

• 𝑉 is a set of nodes, representing all entities in ChEBI;
• 𝑇 is a set of triples, where each triple 𝑡 = (𝑠, 𝑜, 𝑙) consists

of two nodes 𝑠 and 𝑜 , called the subject and object of the
triple, and a label 𝑙 ;

• 𝐿 is a set of labels, representing the possible relationships
in ChEBI.

The enrichment task defined in this work is a simple binary
classification

𝑓 (𝑡) =
{
1, if 𝑡 is a correct triple
0, otherwise

A triple is called correct if it denotes a true piece of knowledge.
Three binary classification taskswere devised in simulated knowl-

edge enrichment tasks of identifying different types of erroneous
triples:

• Task one (true vs random false triples): Positive triples
comprised those extracted from the ChEBI database, i.e.,
𝑇𝑝𝑜𝑠 ⊆ 𝑇 . Negative triples were randomly generated as
those without a directed link from a subject entity to an
object entity, i.e., 𝑇𝑛𝑒𝑔1 ⊆ {(𝑠, 𝑜, 𝑙) |𝑠 ∈ 𝑉 , 𝑜 ∈ 𝑉 , (𝑠, 𝑜, 𝑙) ∉
𝑇 }.
• Task two (true vs wrong direction triples): This task

assessed the degree to which models could distinguish true
triples (𝑇𝑝𝑜𝑠 ) from flipped negative triples. Negative triples
were generated by inversion of positive triples, 𝑇𝑛𝑒𝑔2 ⊆
{(𝑜, 𝑠, 𝑙) | (𝑠, 𝑜, 𝑙) ∈ 𝑇, (𝑜, 𝑠, 𝑙) ∉ 𝑇 }. For example, for a posi-
tive triple (Androsta-4,9(11)-diene-3,17-dione, has_role, an-
drogen), the corresponding negative triple would be (andro-
gen, has_role, Androsta-4,9(11)-diene-3,17-dione).

• Task three (true vs wrong object triples) In the final and
probably also most challenging task, models were asked
to differentiate between true triples and their counterparts
where only the object was replaced with a closely related
entity, i.e., one of its sibling entities in ChEBI: 𝑇𝑛𝑒𝑔3 ⊆
{(𝑠, 𝑜2, 𝑙) | (𝑠, 𝑜1, 𝑙) ∈ 𝑇, (𝑠, 𝑜2, 𝑙) ∉ 𝑇, 𝑝 (𝑜1) ∩ 𝑝 (𝑜2) ≠ ∅},
where 𝑝 (·) is the function to retrieve parents of an entity.
For example, for a positive triple (Androsta-4,9(11)-diene-
3,17-dione, has_role, androgen), a negative triple could be
(Androsta-4,9(11)-diene-3,17-dione, has_role, estrogen).

2.3 Pretrained language models and distributed
representations

The following pretrained causal language models were included in
this study for in-context learning experiments:

• BioGPT [20]: a domain-specific generative Transformer lan-
guage model pretrained on large-scale biomedical literature,
comprising 15 million PubMed items 2, each with both title
and abstract, retrieved before 2021.

• OpenAI’s GPT model versions 3.5 and 4.0. Both models
were accessed via OpenAI’s API access point3. The GPT3.5

2https://pubmed.ncbi.nlm.nih.gov
3https://api.openai.com/v1/chat/completions

model used was gpt-3.5-turbo with model ID of gpt-3.5-
turbo-06134 and the utilized GPT4.0 model name was gpt4
with an ID of gpt-4-06135.

We used the PubmedBERT [10] model in language model fine-
tuning experiments. For the third NLP paradigm experiments, su-
pervised learning, the following (pretrained) embedding models
were included.

• GloVe [26]: GloVE (Global Vectors for Word Represen-
tation) is an embedding model pretrained using an unsu-
pervised learning algorithm on the Common Crawl corpus
with a total of 840B tokens. This study used the glove.840B.300d
obtained fromhttps://nlp.stanford.edu/projects/glove/, which
has a 2.2M cased vocabulary and a vector dimension size
of 300.

• W2V-Chem: A word2vec [22] model was trained from
scratch on 7,201 full papers from the chemical domain.
These were sourced from PubMed using cross references
associated with the ChEBI ontology. The titles, abstracts
and full texts of these papers were used to train domain-
specific word embeddings. Embeddings were initialized
from random vectors.

• GloVe-Chem:We developed an embedding model by fur-
ther adapting the GloVe embeddings for ChEBI enrichment.
Specifically, the previously mentioned 7,201 PubMed arti-
cles were used to further train embeddings from the GloVe
model. In contrast to W2V-Chem, the vocabulary was built
by joining the texts from chemical domain papers and the
vocabulary from GloVe. The input layer was initialised from
Glove embeddings.

• Biowordvec [37]: An embedding model was developed
for the biomedical domain using fastText [4] trained on
large biomedical corpus, as well as on information from the
MeSH knowledge graph.

• PubmedBERT embeddings: PubmedBERT was also used
for deriving vector representations for triples. We summed
up the last 4 hidden layers of the special token [CLS] for
each component of a triple and used this as the entity rep-
resentation.

• Random embeddings:We were also interested in evalu-
ating word representations with no semantics by using a
random embedding model. For a given ChEBI database en-
tity, embeddings were generated via tokenization followed
by assignment of a 300-dimension vector to each token. Vec-
tors were randomly generated from uniform distribution
between -1 and 1.

2.4 NLP paradigm 1: In-context learning with
pretrained Large Language Models

Relative performances of GPT-3.5 Turbo, GPT-4 and BioGPT in
the three binary classification tasks were evaluated using few-shot
prompting. Models were provided with three positive and three
negative example triples, and prompted to classify a seventh. Triples
used in prompts were selected randomly from training data, elimi-
nating any duplicates. Approximately equal numbers of positive
4https://platform.openai.com/docs/models/gpt-3-5
5https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
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and negative triples were queried for classification. We selected a
50:50 ratio to ensure that there was balanced training in this work

For each task, models were provided with 100 distinct prompts,
with each repeated five times. We experimented with three prompt
formulations: (i) a base prompt (Table 1); (ii) a second variant in
which we added an additional sentence ‘If you do not know the
answer, state ‘I don’t know’, aiming to reduce hallucinations, and
hence improve the utilities and performances; and (iii) a variant
in which positive and negative example triples were presented in
a random order. The latter was done in response to an observed
tendency for the BioGPTmodel to disproportionately classify triples
as negative, having hypothesized that this might result from the
order in which triples were presented (three positive examples,
three negative examples, query triple).

2.5 NLP paradigm 2: fine-tuning BERT model
for knowledge curation

The PubmedBERT model was fine-tuned to conduct each of the
three classification tasks. Triples were converted into sequences
of words by concatenating the labels of subject, relationship and
object with a special separator token <SEP>. The sequencewas then
tokenized using the PubmedBERT tokenizer, and the output was
fed into the transformer layers. The final layer of the model is a fine-
tuning layer specific to the document classification task. This layer
takes the output of the encoder layer and applies a feed-forward
neural network to produce a vector representation of the document.
This vector representation is then passed through a softmax layer
to produce a probability distribution over the possible document
classes (true or false in our scenario).

For supervised learning approaches, we follow the same pro-
cess as formalized in Algorithm 1 for using different embedding
models and different learning algorithms. Essentially, triples were
converted to vector representations, which were then fed into the
chosen machine learning (ML) algorithm for model fitting. The
vector representations were generated depending on the chosen
algorithm type:

• If the ML algorithm is a recurrent neural network (RNN)
or its variants (e.g., LSTM - Long Short Term Memory net-
work), the representation of a triple will be a sequence
of vectors generated by (1) tokenizing each component of
the triple; (2) converting each token into a vector using
the chosen embedding model; (3) merging three vector se-
quences by using a special separator token, indicating the
boundaries of the components.

• For other algorithms, triples will be converted into one
vector by (1) tokenizing each component of the triple; (2)
averaging vectors of each component; (3) combining the
representations of each of the three components by con-
catenation.

LSTM and Random Forest ML algorithms were chosen in our
implementations, representing RNN and non-sequential archetypes.
Two types of tokenizers were used; for the PubmedBERT embed-
ding model, the PubmedBERT tokenizer was used. For all other
embedding models, we used the the NLTK [3] library. Specifically,

Algorithm 1 Supervised learning for knowledge curation using
embeddings

Input:
𝑋 : the training data - a list of triples;
𝑦: the labels of the training data;
𝑒𝑚𝑏: an embedding model;
𝑠𝑒𝑝_𝑡𝑜𝑘𝑒𝑛: a special token as separator;
𝑇𝑘𝑛: a tokenizer;
𝑀 : the supervised learning algorithm;
𝑚𝑜𝑑𝑒𝑙_𝑡𝑦𝑝𝑒: the type of the𝑀 .

Output: Fitted model𝑚.
1: 𝑋𝑣 ← []
2: 𝑣𝑠𝑒𝑝 ← 𝐸𝑚𝑏 (𝑠𝑒𝑝_𝑡𝑜𝑘𝑒𝑛)
3: for 𝑡 in 𝑋 do
4: (𝑠, 𝑜, 𝑙) ← 𝑡

5: if 𝑚𝑜𝑑𝑒𝑙_𝑡𝑦𝑝𝑒 is RNN then ⊲ For RNN-like algorithms,
generate a sequence of vectors

6: (𝑤𝑠1, ...,𝑤𝑠𝑖 ) ← 𝑇𝑘𝑛(𝑠)
7: (𝑤𝑙1, ...,𝑤𝑙 𝑗 ) ← 𝑇𝑘𝑛(𝑙)
8: (𝑤𝑜1, ...,𝑤𝑜𝑚) ← 𝑇𝑘𝑛(𝑜)
9: 𝑣𝑒𝑐𝑡 ← [
10: 𝑒𝑚𝑏 (𝑤𝑠1), ..., 𝑒𝑚𝑏 (𝑤𝑠 𝑗 ), 𝑣𝑠𝑒𝑝 ,
11: 𝑒𝑚𝑏 (𝑤𝑙1), ..., 𝑒𝑚𝑏 (𝑤𝑙 𝑗 ), 𝑣𝑠𝑒𝑝 ,
12: 𝑒𝑚𝑏 (𝑤𝑜1), ..., 𝑒𝑚𝑏 (𝑤𝑜 𝑗 )
13: ]
14: else
15: 𝑣𝑒𝑐𝑡 ← 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (
16:

∑
𝑤∈𝑇𝑘𝑛 (𝑠 ) 𝑒𝑚𝑏 (𝑤 )
|𝑇𝑘𝑛 (𝑠 ) | ,

17:
∑

𝑤∈𝑇𝑘𝑛 (𝑙 ) 𝑒𝑚𝑏 (𝑤 )
|𝑇𝑘𝑛 (𝑙 ) | ,

18:
∑

𝑤∈𝑇𝑘𝑛 (𝑜 ) 𝑒𝑚𝑏 (𝑤 )
|𝑇𝑘𝑛 (𝑜 ) | )

19: end if
20: 𝑋𝑣 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑣𝑒𝑐𝑡)
21: end for
22: 𝑚 ← 𝑀.𝑓 𝑖𝑡 (𝑋𝑣, 𝑦)
23: return𝑚

its RegexpTokenizer 6 was used with hand-crafted regular expres-
sion patterns for tokenizing special chemical entity names. Random
vectors were used for out of vocabulary situations. Hyperparameter
optimization was applied using a 5-fold cross validation on training
data, optimized for F1-scores.

2.6 Effects of imbalanced data and variations in
training data size

It is well understood that ML model performances are adversely
affected by training data imbalance and/or scarcity. We therefore
sought to explore and compare model performances (paradigms 2
& 3: fine-tuning and supervised learning) under these sub-optimal
conditions. Such an investigation would also provide evidence on
when the paradigm 1 is most useful, since pretrained LLMs have
been trained on large corpora and thus have minimal dependency
on task-related training data.

6https://www.nltk.org/api/nltk.tokenize.RegexpTokenizer.html
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Basic prompt template
"""
Your task is to classify triples as True or False.
<triple>: {positive_example_1}
<classification>: True
<triple>: {positive_example_2}
<classification>: True
<triple>: {positive_example_3}
<classification>: True
<triple>: {negative_example_1}
<classification>: False
<triple>: {negative_example_2}
<classification>: False
<triple>: {negative_example_3}
<classification>: False
<triple>: {prompt_triple}
"""

Table 1: The template used for prompting LLMs (Variant #1). In generating prompts, curly bracket-enclosed contents were
replaced with corresponding triples derived from actual data.

Using reduced datasets (∼10% of the full training and test datasets),
we generated varying train-test split ratios via random selection of
successively smaller subsets of training data (9:1, 8:1, 7.1, 6:1, 5:1,
4:1, 3:1, 2:1, 1:1, 0.5:1 for training:testing splits). Effects of imbal-
anced data were determined by altering the ratio of positive versus
negative triples present in training data (1:1, 0.75:1, 0.5:1, 0.25:1,
0.125:1 positive:negative).

3 RESULTS
As of February 2022, ChEBI contained 147,461 entities. Chemical
Entities represent the majority (145,869), followed by 1,550 Role
Entities and 42 Subatomic Particles. There are total 318,438 triples,
with a highly imbalanced distribution of relationships; the 3 most
common types make up > 90% of all triples: 230,241 (72.3%) is_a,
42,095(13.2%) has_role and 18,204 (5.7%) has_functional_parent. A
total of 47,701 unique tokens were derived from these triples using
the NLTK tokenization process described in the method section.
Table 2 shows the detailed numbers of the populated datasets for
three tasks and setups for three NLP paradigms.

3.1 Results of supervised learning paradigm
Table 3 shows the results of random forest models on all three tasks.
For task 1, W2V-Chem, a word2vect model trained from scratch,
performed best (F1-score: 0.9690). Performances of LSTM models
in general were on par with those of random forest models. For
the simplicity of reporting and discussions, LSTM models’ result
were not presented or discussed in the rest of this paper. The best
performing embedding model for task 2 was PubmedBERT, while
GloVe-Chem (GloVe futher trained on ChEBI related papers) was
the best for task 3.

Comparing the best F1-scores across three tasks (Task 1: 0.9690,
Task 2: 0.9822 and Task 3: 0.9125), it seemed Task 3 (in which
negative triples were formed by replacing the object with similar

entities) was the most challenging for ML based approaches and
Task 2 (in which negative triples were formed by swapping the
relationship direction) was the easiest.

3.2 Results of fine-tuning PubmedBERT
We fine-tuned the PubmedBERT model for three document classifi-
cation tasks, and utilised a Cross-Entropy loss function. This model
ran for 3 epochs and found that there was negligible differences
in performance when running between 3 and 4 epochs, and thus
optimised for performance. The learning rate for this model was
set to 1 × 10−4 and employed the Adam optimiser. The fine-tuning
datasets for three tasks and results of fine-tuned PubmedBERT
are summarised in Table 4. Overall, performances are on par with
Random Forest model trained on PubmedBERT embeddings, and
frequently rank among the best approaches tested, although not
consistently so. In particular, the fine-tuned PubmedBERTmodel for
task 3 was about 5% worse than the best ML based model (Random
forest using GloVe-Chem).

3.3 Results of In-context learning paradigm:
prompting three GPT models

Table 5 contains results for LLM prompting experiments for classifi-
cation of true versus randomly-generated negative triples (Task 1),
true versus reversed triples (Task 2) or true versus closely-related
negative triples (Task 3). The column No. unclassified shows the
numbers of triples for which the model either did not give a valid
result (True of False) or explicitly said ‘I don’t know’ in our second
prompting strategy. These triples were deemed as not accurately
classified in accuracy evaluation. However, they were excluded in
precision, recall and F1 calculations. This was done in order to com-
prehensive evaluate both LLMs’ general performances on all tests,
and performances where a decisive answer was given.
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Table 2: Statistics of generated datasets for three tasks. Training and test sets shown are for the supervised learning paradigm,
which was based on a split of 9:1 ratio.

Triples Training set Test set Total#positive #negative #positive #negative #positive #negative
Task 1 310,193 310,193 279,178 279,177 31,015 31,016 620,386
Task 2 305,715 305,715 275,146 275,146 30,569 30,569 611,430
Task 3 310,193 307,188 279,178 276,469 31,015 30,719 617,381

Table 3: Results of NLP Paradigm 1: supervised machine learning using embedding models. These are results from Random
Forest models. Bold texts indicate the best performances.

Embeddings
Task 1 Task 2 Task 3

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Random 0.9576 0.9573 0.9574 0.9581 0.9581 0.9581 0.9042 0.9042 0.9042
GloVe 0.954 0.9536 0.9538 0.9573 0.9573 0.9573 0.9073 0.9073 0.9073
W2V-Chem 0.9691 0.969 0.9690 0.9596 0.9596 0.9596 0.9122 0.9122 0.9122
GloVe-Chem 0.9683 0.9683 0.9683 0.9586 0.9586 0.9586 0.9126 0.9125 0.9125
BioWordVec 0.9676 0.9675 0.9675 0.9605 0.9605 0.9605 0.9062 0.9061 0.9061
PubmedBERT 0.9356 0.9353 0.9354 0.9822 0.9822 0.9822 0.906 0.906 0.9060

Table 4: Results of NLP paradigm 2: Fine-tuning datasets and performances of fine-tuned PubmedBERT models on three tasks

Tasks Datasets (# Triples) Model Performance
Training Validation Test Accuracy Precision Recall F1

Task 1 496,308 62,039 62,039 0.9565 0.9798 0.9319 0.9552
Task 2 489,144 61,143 61,143 0.9840 0.9931 0.9749 0.9839
Task 3 493,903 61,739 61,739 0.8723 0.9240 0.8124 0.8646

Overall, GPT-3.5 Turbo and GPT-4 achieved competitive perfor-
mances via few-shot prompting approaches. GPT-4 outperformed
GPT-3.5 Turbo by a considerable margin in all three tasks, attaining
maximal F1 scores of 0.9041, 0.8880 and 0.9082, respectively. Impor-
tantly, both models provided extremely consistent responses, with
minimum Fleiss kappa scores of 0.95 and 0.86, respectively.

Performance of BioGPT was comparatively poor, however, with
accuracy and Fleiss’ kappa scores consistent with random guessing.
Modification of the base prompt to allow the models to answer
‘I don’t know’ did not appear to reliably enhance precision and
F1 scores, but did generally lead to an increase in proportion of
unclassified triples and consequent reduction in overall accuracy.
Randomization of the ordering of positive and negative example
triples appeared to be a more effective modification. In particular,
GPT-4 prompted using this formulation yielded the highest F1
scores in all tasks.

3.4 Comparisons of three NLP paradigms on
enrichment tasks

Comparing results from Tables 3-5, across three enrichment tasks,
supervised learning approaches and fine-tuning pretrained BERT
models achieved similar performances, with the exception of task 3,
where the fine-tuned PubmedBERT model performed worse. Both
were superior to in-context learning of LLMs, even only considering

those triples for which LLMs gave confident answers. However,
these might not direct comparable because they were not assessed
using the same test set.

3.4.1 Effects of imbalanced data and variations in train-test splits on
supervised learning and fine-tuning. Figure 2 shows the changing
patterns of F1-scores of three representative models in all three
tasks. For each task, we picked three models; models trained us-
ing random vectors (as a reference) and two most consistently
performing models. Unsurprising, in all tasks, performances de-
creased steadily as less training data was available and greater
imbalance was introduced. PubmedBERT and GloVe-Chem were
the most consistent models, i.e., less prone to sub-optimal training
data. Fine-tuned models outperformed all ML based approaches
in the first two tasks. However, the fine-tuned approach suffered
much more significantly for task 3, performing worse even than
ML with random embeddings.

We also plotted GPT-4’s performances on the figures. Essen-
tially, GPT-4 would be a better tool to use in scenarios where those
solid lines are below the dashed line, i.e., ML based or fine-tuning
approaches won’t achieve any better performances than GPT-4.
For task 1, GPT-4 outperformed both ML-based and fine-tuned ap-
proaches in the two most extreme scenarios, i.e., (Split: 1:1; P:N:
1:8) and (Split: 0.5:1; P:N: 1:10). For task 3, GPT-4 was superior in all
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Table 5: Results of NLP paradigm 3: comparisons of effectiveness and consistency of in-context learning using LLMs for all
three tasks with different prompting strategies. Note: for accuracy evaluation, the unclassified triples were included; for other

metrics, those were NOT included.

Model Prompt formulation Overall accuracy: Mean (SD) No. unclassified (%) Precision: Mean (SD) Recall: Mean (SD) F1: Mean (SD) Kappa

GPT-3.5
#1 0.8040 (0.0083) 0 (0) 0.9724 (0.0007) 0.6518 (0.0155) 0.7804 (0.0114) 1.00
#2 0.7020 (0.0084) 109 (21.8) 1.0000 (0.0000) 0.8067 (0.0025) 0.8930 (0.0015) 0.98
#3 0.7380 (0.0045) 95 (19.0) 0.9273 (0.0135) 0.8485 (0.0000) 0.8861 (0.0062) 0.97

BioGPT
#1 0.4600 (0.0255) 92 (18.4) 0.4667 (0.3613) 0.0412 (0.0344) 0.0730 (0.0580) 0.07
#2 0.3500 (0.0224) 111 (22.2) 0.6333 (0.4150) 0.0276 (0.0196) 0.0526 (0.0369) 0.05
#3 0.4620 (0.0356) 111 (22.2) 0.6530 (0.0892) 0.2872 (0.0671) 0.3979 (0.0814) 0.13

GPT-4
#1 0.9160 (0.0055) 0 (0) 1.0000 (0.0000) 0.8250 (0.0114) 0.9041 (0.0068) 0.98
#2 0.8660 (0.0152) 27 (5.4) 0.9723 (0.0010) 0.8340 (0.0183) 0.8978 (0.0110) 0.95
#3 0.8320 (0.0164) 55 (11.0) 1.0000 (0.0000) 0.8385 (0.0327) 0.9119 (0.0195) 0.96

(a) Task 1 - Classification of true versus randomly generated negative triples. Relationship type: ’Is_a’.

Model Prompt formulation Overall accuracy: Mean (SD) No. unclassified (%) Precision: Mean (SD) Recall: Mean (SD) F1: Mean (SD) Kappa

GPT-3.5
#1 0.6740 (0.0055) 0 (0) 0.7480 (0.0076) 0.6456 (0.0078) 0.6930 (0.0052) 0.97
#2 0.5920 (0.0045) 97 (19.4) 0.7417 (0.0021) 0.8446 (0.0104) 0.7898 (0.0053) 0.98
#3 0.5680 (0.0084) 80 (16.0) 0.6264 (0.0080) 0.8342 (0.0109) 0.7155 (0.0085) 0.98

BioGPT
#1 0.3040 (0.0089) 123 (24.6) 0.6667 (0.3118) 0.0349 (0.0186) 0.0656 (0.0345) 0.06
#2 0.4120 (0.0311) 127 (25.4) 0.4000 (0.2937) 0.0552 (0.0408) 0.0968 (0.0711) 0.08
#3 0.4180 (0.0415) 103 (20.6) 0.5877 (0.1161) 0.2144 (0.0650) 0.3111 (0.0789) 0.04

GPT-4
#1 0.7660 (0.0134) 0 (0) 0.7650 (0.0150) 0.7680 (0.0110) 0.7665 (0.0127) 0.92
#2 0.6880 (0.0110) 43 (8.6) 0.7390 (0.0191) 0.7753 (0.0478) 0.7557 (0.0182) 0.86
#3 0.8160 (0.0114) 38 (7.6) 0.8883 (0.0160) 0.8880 (0.0182) 0.8880 (0.0108) 0.94

(b) Task 2 - Classification of true versus reversed triples. Relationship type: ’Is_a’.

Model Prompt formulation Overall accuracy: Mean (SD) No. unclassified (%) Precision: Mean (SD) Recall: Mean (SD) F1: Mean (SD) Kappa

GPT-3.5
#1 0.7180 (0.0084) 0 (0) 0.7258 (0.0128) 0.5773 (0.0124) 0.6430 (0.0110) 0.97
#2 0.6680 (0.0045) 91 (18.2) 0.7838 (0.0000) 0.8056 (0.0000) 0.7945 (0.0000) 0.99
#3 0.5920 (0.0110) 157 (31.4) 0.8253 (0.0089) 0.9393 (0.0114) 0.8786 (0.0062) 0.95

BioGPT
#1 0.4500 (0.0520) 89 (17.8) 0.4271 (0.1920) 0.0664 (0.0340) 0.1147 (0.0576) 0.01
#2 0.3440 (0.0207) 88 (17.6) 0.5833 (0.2041) 0.0614 (0.0485) 0.1090 (0.0827) 0.03
#3 0.4520 (0.0319) 96 (19.2) 0.6854 (0.1036) 0.2989 (0.0499) 0.4152 (0.0650) 0.10

GPT-4
#1 0.8740 (0.0055) 0 (0) 0.9236 (0.0093) 0.8042 (0.0114) 0.8597 (0.0066) 0.94
#2 0.7980 (0.0045) 54 (10.8) 0.9268 (0.0132) 0.7943 (0.0128) 0.8554 (0.0086) 0.99
#3 0.8480 (0.0084) 24 (4.8) 0.9483 (0.0082) 0.8712 (0.0093) 0.9082 (0.0080) 0.95

(c) Task 3 - Classification of true versus closely-related negative triples. Relationship type: ’Is_a’.

but the first setting (Split: 9:1; P:N: 1:1). For task 2, however, GPT-4
never surpassed ML-based or fine-tuned approaches.

4 DISCUSSION
In this study, we followed three typical NLP paradigms, imple-
mented a number of models using eight pretrained models, and
conducted a series of experiments on three knowledge enrichment
tasks. These have generated comprehensive sets of results and
revealed some insightful findings.

In the head-on-head comparisons, the state-of-the-art foundation
models didn’t perform well in our three tasks. The best NLP para-
digm seems to be supervised learning methods using domain/task
related pretrained distributed representations. Fine-tuning pre-
trained language models also performed strongly, particularly in
task 2. However, such interpretations might only translate to situa-
tions where there is sufficient training data for the task on hand, as
the ML models and fine-tuned models were trained or fine-tuned
on plenty of data (at the scale of hundreds of thousands of triples).
Further experiments simulating five data availability scenarios re-
vealed more detailed and practical insights. For tasks 1 and 3, GPT-4

was clearly superior when the training data contained no more
than 6,000 triples with an imbalance around 1:8 (positive:negative)
or higher. However, GPT models seemed particularly poor in task
2 (i.e., classifying wrong relationship directions), where their in-
context learning capacities never surpassed other NLP paradigms
in all five scenarios tested.

Among the three GPT models, the domain specific BioGPT was
not as good as generic counterparts. Recall scores were particularly
poor. It also tends to give irrelevant answers even when prompted
not to do so. This may have been due to the significant differences
of training corpus size and number of parameters, and also the fact
that it was not further improved via reinforcement learning from
human feedback. GPT-3.5 and GPT-4 also showed very consistent
results reflected by their Kappa scores. Prompting these two models
not to make a classification when unsure led to considerably high
performances (F1 scores: 0.79-0.91) for those triples where a defini-
tive classification was made. Combined, these observations indicate
that state-of-the-art foundation models could be very promising
tools for knowledge curation, albeit leaving a 5-11% of the data
unclassified.
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Figure 2: F1 scores by training data volume (split) and level
of imbalance (ratio of positive:negative triples) for Tasks
1-3. Graphs depict results for representative models from
all three NLP paradigms. Dashed gray lines indicate GPT-4
in-context learning performances and purple lines are those
of fine-tuned PubmedBERT models. Other lines are for em-
bedding models.

Fine-tuning pretrained language models was shown to be an
effective approach for enrichment tasks 1 and 2. When there was
abundant data, its performances were among the best. Fine-tuned
models performed much stronger compared to supervised ML mod-
els when there was only 9% of the full dataset for training, i.e., at
the scale of 55,000. They were also shown to have the greatest con-
sistency as training data availability was decreased. However, the
fine-tuning approach, at least with the PubmedBERT model used in
this work, seemed to bear some shortcomings regarding task 3 in
our simulation experiments. Although its performance was initially
strong (using 9% of the full dataset for training), its performances
deteriorated much faster with a F1-score of 0.47 in the fifth scenario
(training data: 3,087 triples and 1:9 imbalance ratio). The reason
behind this observation is worthy of further investigation, and may
lead to some interesting findings.

Our results showed that supervised learning using distributed
representations was certainly still a valid NLP paradigm for knowl-
edge curation tasks. When abundant training data was available,
even ML using random embeddings could achieve very good per-
formances, which were superior to in-context learning using GPT
models. Task-specific pretrained embedding models (trained on
ChEBI related articles) were clearly very useful to such curation
tasks, achieving the best performances in the various setups ex-
plored. In particular, W2V-Chem embeddings - only trained on
around 7,000 PubMed articles - achieved surprisingly good per-
formances. This demonstrates the effectiveness of a simple model
(word2vec) with a small task-related corpus in downstream tasks.

A key limitation of this work was that only a single ontology/KG
was utilized, potentially leading to questions on the generalizability
of these findings. To mitigate this, our study introduced three dif-
ferent types of curation tasks, and assessed model performances in
five different data availability scenarios. Combined, these generated
15 different scenarios, representing a comprehensive exploration of
the effectiveness of these approaches in a diverse range of settings.
Nevertheless, future work using diverse datasets would produce
more conclusive findings across different application domains. The
other limitation was the potential reproducibility issue caused by
the use of OpenAI’s GPT models via their API access. It is well
known that these models are continually undergoing revision and
improvement. For example, our initial GPT-3.5 experiments con-
ducted in July 2023 yielded significantly poorer results than the
latest run on the samemodel in November 2023. Future work should
evaluate the use of open source GPT models like Meta’s Llama [30].

5 CONCLUSION
This work evaluated three NLP research paradigms in the context
of knowledge curation for enriching biomedical ontologies with
extensive experiments and in-depth analysis. We found in-context
learning using the state-of-the-art LLMs did not yield the best
performance. However, they do have their utilities when proper
prompting strategies are used.When the training dataset size was as
big as 24,000, smaller, domain-specific BERT based model can beat
large, open domain state-of-the-art LLMs. Also, supervised learning
approaches are not obsolete. Specifically, they outperformed LLMs
significantly when there is a large enough training data.
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