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ABSTRACT
Large Language Models (LLMs) continue to demonstrate immense
capabilities in many tasks relating to natural language understand-
ing and generation. These capabilities, to a large extent, are possible
because of the effective data management strategies that go into
preparing the training dataset for these models. Applying a few-
shot learning technique on a dataset opens unique opportunities
for using LLMs in many domains, including enhancing knowledge
graph construction (KGC) processes. However, the fundamental
problem in KGC is identifying entities and relationships and re-
solving triple complexities. In this work, we explore the in-context
learning capability of GPT-4 for instruction-driven adaptive KGC
and propose a novel approach that forces GPT-4 to reflect on the er-
rors it makes in the given examples and generates verbal experience
to guide the model to avoid similar mistakes during the KGC. Our
comparative analysis of few-shot learning and the baseline (zero-
shot learning) not only highlights the strengths and limitations of
GPT-4 in KGC but also demonstrates how the in-context learning
capabilities of GPT-4 can contribute to more dynamic, accurate, and
instruction-followed knowledge graphs.
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1 INTRODUCTION
Human knowledge representation, learning and reasoning is a fun-
damental cornerstone of Artificial Intelligence (AI) [14]. Knowledge
Graphs (KGs) are designed to accumulate and convey factual knowl-
edge of the real world, which organize and represent knowledge in
the form of graphs, where the nodes represent entities of interest
or attributes and edges represent relations between these entities
and attributes [22]. As a form of structured human knowledge,
KGs greatly complement the domain of AI by providing machine-
readable data and semantic richness, which allows for more sophis-
ticated and context-aware algorithms. KGs have been successfully
applied in various areas, including information retrieval [18], rec-
ommendation systems [38] and question answering [4].

Constructing KGs involves a systematic process that extracts in-
formation from various sources. Early approaches for KG construc-
tion were predominantly human-centric, i.e., extensively relying
on human expertise and involving considerable manual curation,
domain-specific knowledge, and rule-based extraction techniques to
identify and categorize entities and their interrelationships. Repre-
sentative examples of these early methods include TextRunner [45],
KnowItAll [28], Yago [31] and DBpedia [3]. Although those ap-
proaches ensure a high degree of reliability in the resulting KGs,
they are laborious and scale poorly with the vast amount of informa-
tion available on the web. Additionally, while powerful in specific
domains, rule-based systems struggle to adapt to the dynamic and
varied nature of human knowledge, limiting their applicability
and flexibility. Subsequently, several machine learning-based ap-
proaches have been proposed for specific tasks in the KG construc-
tion process, such as named entity recognition [9, 48], coreference
resolution [30], and relation extraction [46]. Leveraging those ma-
chine learning-based methods to build a pipeline that systematically
addresses individual tasks can automate and scale the construction
of KGs. Despite the significant benefits, a notable concern is the
issue of error propagation, where inaccuracies in early process-
ing stages can cumulatively affect the quality and reliability of the
resulting knowledge graph.
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Large Language Models (LLMs), such as the OpenAI GPT series,
have recently demonstrated remarkable language understanding
and text generation capabilities. One of the most remarkable aspects
of LLMs, including GPT-4, is their ability to perform in-context
learning (or so-called few-shot learning), which enables LLMs to
adapt their responses based on the examples provided within a
prompt [5]. In this paper, we aim to explore the potential of GPT-4
for KG construction driven by user instructions. A critical aspect
of our exploration focuses on the in-context learning capabilities
of GPT-4, with which their responses can be adapted based on the
examples provided in the prompt, making selecting these examples
a pivotal factor in the effectiveness of the KG construction. We test
different example selection strategies, examining their impacts on
the quality of generated KGs. Moreover, we propose a self-reflection
approach that enables GPT-4 to explicitly or implicitly reflect on
errors from examples to mitigate incorrect inference during the
construction process, which involves instructing the LLM to identify
and learn from the mistakes in its outputs or the examples provided,
thereby enhancing its ability to generate more accurate and reliable
KGs.

2 BACKGROUND AND RELATEDWORK
In this section, we provide a comprehensive overview of the foun-
dational concepts and significant advancements in LLMs and KG
construction, which sets the stage for understanding how these
technologies can be integrated to enhance instruction-driven KG
construction.

2.1 Large Language Models
Recently, we have witnessed the great success of LLMs, which have
shown great capabilities in understanding and generating human
language and led to breakthroughs in a wide range of downstream
applications, including text summarization, machine translation,
content generation, and conversational systems.

Architectural Foundations. Modern LLMs are mostly built upon
Transformer architecture [35], known for its self-attention mech-
anism. The transformer architecture has been adapted into three
main forms: Encoder-decoder such as T5 [24], Encoder-only such as
BERT [7] and Decoder-only such as GPT [23]. Nowadays, the train-
ing paradigm for LLMs typically includes two main phases, i.e., first
pre-trained on a massive and diverse dataset and then fine-tuned
on a smaller and domain-specific dataset allowing for specialized
performance in specific domains or tasks. We have witnessed the
great success of commercial LLMs, such as OpenAI GPT family
and Anthropic Claude family. In addition to proprietary models,
the field of large language models (LLMs) has seen the develop-
ment of several influential open-source models. Notable examples
include ALBERT [15], which reduces model size while maintaining
performance through parameter sharing and factorized embedding
parameterization. RoBERTa [16] builds on BERT by optimizing the
training approach, such as training with larger mini-batches and
removing the next-sentence prediction task. DistilBERT [26] fo-
cuses on model compression, providing a smaller, faster version of
BERT that retains most of its performance. More recent models like
LLaMa [32, 33] and Bloom [27] push the boundaries of open-source

LLMs by offering competitive performance with state-of-the-art
proprietary models.

Prompting Techniques and In-Context Learning. Hallucination in
the context of LLMs refers to the generation of information that is
not supported by the input data or existing knowledge. This phe-
nomenon can lead to factually incorrect or misleading responses,
undermining the model’s utility in critical applications. Prompting
techniques in the context of language models refer to crafting in-
puts (prompts) to guide LLMs in generating specific outputs, which
is crucial for extracting maximum utility from these models. Sev-
eral prompting techniques have been proposed, such as Chain-of-
Thought (CoT), Chain-of-Thought with Self-Consistency (CoT-SC),
ReAct and Reflexion. CoT [40] encourages models to think aloud by
generating intermediate reasoning steps before arriving at a final
answer. This approach not only improves the interpretability of
model outputs but also enhances the accuracy of complex reasoning
tasks by breaking them down into simpler and manageable steps.
Building on it, CoT-SC [39] incorporates self-consistency mecha-
nisms that generate multiple reasoning paths for a given task and
select the most consistent answer among them, thereby improv-
ing the reliability and accuracy of the model outputs. ReAct [44]
leverage LLMs to generate reasoning traces and task-specific ac-
tions in an interleaved manner, where reasoning traces create and
update plans and handle exceptions and actions allow to interact
with external sources to obtain further information. Reflexion [29]
reinforces language models through linguistic feedback and main-
tains those reflective texts in an episodic memory buffer for better
decision-making in subsequent trials.

Besides, in-context learning is a significant stride in LLMs, which
enables LLMs to adapt responses based on the context provided
within a prompt and to understand and execute tasks with limited
examples. In-context learning is a paradigm that allows language
models to learn tasks given only a few examples in the form of
demonstration [8]. GPT-3 has demonstrated substantial proficiency
in performing a wide array of NLP tasks with minimal examples.
Brown et al. tested GPT-3 across various settings: zero-shot, one-
shot, and few-shot settings and the model’s performance achieved
state-of-the-art results in many cases without the need for task-
specific fine-tuning, which showcased its capabilities in few-shot
learning [5]. Building on the success of monolingual models, recent
studies have explored few-shot learning in multilingual contexts.
Research has shown that multilingual generative language models,
such as those trained on diverse language corpora, can effectively
perform few-shot learning across different languages [17]. Several
efforts have been made to improve the efficiency and effectiveness
of few-shot learning. Gao et al. [10] introduced a computationally ef-
ficient prompt-based fine-tuning approach with automated prompt
generation and a refined strategy for dynamically and selectively
incorporating demonstrations into contexts.

2.2 Knowledge Graph Construction
Definition of Knowledge Graphs. KGs represent knowledge in the

real world in the form of graphs, whose nodes represent entities of
interest or attributes and whose edges represent relations between
these entities and attributes. Formally, a KG is defined as K =

(E,R,T , F ) consisting of a set of entities and attributes E, a set
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of relations R, a set of factual triples T = {(ℎ, 𝑟, 𝑡)} where ℎ, 𝑡 ∈ E
and 𝑟 ∈ R (typically binary fact), F𝑘 a set function representing
the background knowledge, or in practice, a rule set, schema, or
set of implicit math principles, that constrains potential facts to be
knowledge-level informative T ⊂ F𝑘 ({E,R}) [47].

Definition of Knowledge Graph Construction. The construction
of KGs has been an active research area in recent years, with vari-
ous approaches proposed to build and enhance KGs. Constructing
KGs is a task of extracting information from various data sources
(structured, semi-structured, and unstructured data) and storing it
in a graph structure. The general process of KG construction can
be divided into three main steps, including knowledge acquisition,
knowledge refinement and knowledge evolution. Entity Discovery
and Relation Extraction (RE) are foundational tasks in the phase
of knowledge acquisition [47]. Named Entity Recognition (NER)
and Entity Linking (EL) are key subtasks of Entity Discovery. NER
aims to locate (entity detection) and classify (entity typing) named
entities mentioned in unstructured text into predefined categories
such as the names of persons, organizations, locations, etc [14].
Entity Typing (ET) is sometimes treated as a distinct task of NER,
as a unique challenge. Entity Linking (EL) or entity disambiguation
is a unified task that links recognized entities to the corresponding
entities in the existing knowledge base (for example, standard on-
tologies) [14]. The knowledge acquisition process is complemented
by Entity Typing (ET), Entity Linking (EL) and Coreference Res-
olution (CR), each contributing uniquely to the enrichment and
precision of information extraction and KG construction. These
tasks, NER, EL, CR and RE, form a comprehensive framework for
developing pipelines that transform unstructured data into struc-
tured, interconnected data, i.e., KGs. Traditionally, these pipelines
heavily relied on linguistic approaches to solve the underlying task,
albeit constrained by their inherent limitations. With the recent
emergence of LLMs, numerous studies have utilized these models
for NER and RE, achieving promising results. Additionally, many
end-to-end approaches have also been developed.

Large Language Models-based Knowledge Graph Construction.
With the success of ChatGPT, LLMs have been studied to applied
to the construction of KGs. Chen et al. [11] compare the ability
of in-context learning of GPT-3 under the few-shot setting with
smaller BERT-size models on biomedical information extraction
tasks, including NER and RE. GPT-NER [37] transforms NER from
a sequence labeling task to a generation task that can be dealt
by LLMs by marking entities with tokens "@@##" based on GPT-
3. It then employs a self-verification strategy, prompting LLMs
to assess whether the extracted entities match the labeled entity
tags. VicunaNER [13] is a two-phase zero/few-shot NER framework
based on Vicuna, an open-source LLM, which leverages multi-turn
dialogues to recognize entities from texts. It involves a Recognition
phase to identify and verify entities and a Re-Recognition phase
to find and correct any missed entities. PromptNER [2] requires
additional entity definitions beyond standard few-shot examples
to implement few-shot and cross-domain NER with T5-Flan-11B,
GPT-3.5 and GPT-4. It generates a list of potential entities from
a sentence, with explanations confirming their alignment with
specified entity types.

Wadhwa et al. [36] evaluate GPT-3 and Flan-T5 (large) on stan-
dard RE tasks under different levels of supervision. Its perfor-
mance can be significantly enhanced through supervision and
fine-tuning using CoT-style explanations. Xu et al. [43] adopts
in-context learning and data generation on few-shot RE via GPT-
3.5 and proposes task-related instructions and schema-constrained
data generation to enhance the performance under the few-shot
setting. S2ynRE [42] is a framework of two-stage Self-training with
Synthetic data for RE based on GPT-2-Large and GPT-3.5. It first
generates synthetic training data by adapting the LLM to the target
domain, then iteratively learns from both synthetic and gold data
with a self-training algorithm. Chen et al. [1] implement a student
model for multimodal NER and RE by generating CoT prompts
based on BERT-base-uncased, XLM-RoBERTa-large, GPT-3.5-turbo
and GPT-4. They propose a conditional prompt distillation method
to absorb the commonsense reasoning ability of LLMs.

Besides, there are also integrated methods that deal with NER
and RE together. AERJE (API Entity-Relation Joint Extraction frame-
work) [12] is a T5-based model extracting API entities and relations
from unstructured text. It uses a multi-task architecture and dy-
namic prompts to frame the extraction as a sequence-to-sequence
generation task. Trajanoska et al. [34] conduct experiments with
sustainability-related text to compare foundational LLMs like Chat-
GPT with specialized pre-trained models like REBEL for joint ex-
traction in a pipeline-based method. ChatIE [41] converts zero-shot
IE tasks into multi-turn question answering problems with a two-
stage framework based on ChatGPT and GPT-3. It first identifies
possible element types in the text and then performs a chain-styled
IE on each identified type.

3 METHODS
In this section, we describe the methods proposed for integrating
LLMs into the process of KG construction and mainly focus on
the task of instruction-driven adaptive KG construction. We adopt
end-to-end approaches, i.e., LLMs directly generate the output in
the form of triples. Our approach primarily leverages the in-context
learning capabilities of LLMs to generate knowledge graph triples
directly from user inputs and instructions.

3.1 Task Definition
The task instruction-driven adaptive KG construction (Instruc-
tionKGC) was first defined in the CCKS2023 Competition Task
1 that is extracting entities and relations of specific types based on
the input text and the instructions provided by the user to construct
a KG1. The core objective is to update and optimize the represen-
tation of the KG based on user requirements, thereby achieving
more accurate and efficient information retrieval and reasoning [6],
and meeting the demands for efficient KG construction in open
environments. In this work, there are assumptions for testing our
proposed methods based on the task definition and data provided
by the CCKS2023 Competition (Details in Section 4.1.1). First, we
assume that we have a pool of labeled data as examples for few-
shot learning. Second, we assume that all data consists of features
including ID, category, input and instruction (labeled data with
output in the form of triples).
1https://tianchi.aliyun.com/competition/entrance/532080
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3.2 Few-shot Learning and Example Selection
Strategies

Our approach primarily leverages the in-context learning capa-
bilities of LLMs, which enables the LLM to generate output with
a small number of examples. As mentioned before, we assume a
labelled data pool of instruction-input-output pairs, from which ex-
amples are selected. Due to the context window, the phenomenon
“lost in the middle” is observed in retrieval augmented genera-
tion approaches [20]. In our case, we set the number of examples
(or "shots") as 3 and applied 3-shot learning to design demonstra-
tions. Initially, several examples are selected and converted into
demonstrations with defined formats. These demonstrations are
then concatenated with a query question to build a prompt. The
prompt we use for naïve 3-shot learning is shown in Figure 1.

Naïve few-shot learning prompt

# Example 1:
Instruction: {$instruction_1}
Input: {$input_1}
Output: {$output_1}
# Example 2:
Instruction: {$instruction_2}
...
# Question:
Instruction: {$instruction_q}
Input: {$input_q}
Output: model generated output in the form of a list of

triples, same as example outputs [(h1, r1, t1), ...]

Figure 1: Naïve few-shot learning prompt template used for
instruction-driven knowledge graph construction.

The effectiveness of few-shot learning relies heavily on the ex-
amples provided during the instruction phase as these examples
guide the LLMs in understanding the context and structure of the
desired output [19, 21]. The selection strategy can be grounded in
three different criteria such as relevance, representativeness, and di-
versity. Relevance ensures that the examples are directly related to
the task at hand, facilitating a more focused in-context learning pro-
cess. Representativeness ensures that the examples reflect the wide
range of possible inputs and desired outputs, covering various types
of entities, relationships, and domain-specific nuances. Diversity
aims at presenting a broad spectrum of scenarios, preventing the
model from overfitting to specific patterns and promoting its ability
to generalize across different knowledge domains. We implement
and compare 4 example selection strategies to maximize the model
performance and get the best results, including fixed examples,
random selection, category-based selection, and similarity-based
selection.

Fixed examples. In order to compare with other strategies and
show the necessity of the example selection, three examples are

chosen from the same category as the most basic strategy to build
demonstrations.

Random Selection. Since there are 12 categories in total in the
dataset, we randomly choose 3 examples from the whole example
dataset. These examples could be chosen from different categories
and this increases the randomness of demonstrations.

Category-based Selection. Relation lists and input text could be
disparate or similar depending on categories. So we also randomly
choose 3 examples per category to eliminate the negative impacts
from different categories with incomparable text input.

Similarity-based Selection. The examples are chosen to explicitly
demonstrate how entities and relations should be extracted from
texts and instructions similar to those models will encounter in real
scenarios and, therefore, must be closely related to the instruction
and text input. We implement similarity-based selection in two
phases,i.e., embedding and retrieval (or search). For simplicity, we
embed the example instruction-text pairs and the query by using
Sentence-BERT [25] with paraphrase-MiniLM-L12-v2 model 2 and
calculate the cosine similarities.

3.3 Self-Reflection
Similar to Reflexion [29], we propose the self-reflection mechanism,
designed to enable LLMs to critically evaluate their output and
learn from errors using examples. This process not only aids in
error identification and correction but also in enhancing the capa-
bility of LLMs to generate more accurate and reliable KG triples
in future iterations. Figure 2 shows the overview of our proposed
self-reflection based in-context learning approach for InstructKGC.

After the selection of examples, the LLM predicts outputs based
on the instructions and input texts. Then we instruct the LLM to
review its outputs and identify potential errors or inconsistencies,
which involves the comparison of generated entities and relations
against the golden output of the examples. Once errors are identi-
fied, the LLM is guided to reflect on these mistakes and generate
verbal experiences. Finally, the query, the selected examples and
the experiences summarized are formed as the prompt to instruct
LLM to adjust its internal representations and strategies for gener-
ating KG triples, aiming to avoid similar errors in future responses.
Figure 3 and 4 show prompts used for self-reflection based few-shot
learning, where the first one implicitly summarizes the mistakes
made in the predictions of example outputs while the second one
explicitly generate verbal error summarization.

4 EVALUATION
In this section, we detail the evaluation used to assess the efficacy
of integrating LLMs into InstructionKGC, particularly our proposed
self-reflection based in-context learning approach.

4.1 Experimental Settings
4.1.1 Dataset. We conduct our experiments on the dataset from
CCKS2023 competition Task 1, i.e., the instruction-driven adaptive
KG construction task. An example data is shown in Listing 1. The
competition dataset consists of three subsets for training, validation

2https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2
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Figure 2: Overview of the self-reflection-based in-context (few-shot) learning for InstructKGC. Parts in light blue ellipses form
the self-reflected prompt and the light purple ellipse represents output.

and testing. However, only the training part is provided with labels
and so far there is no API available for continuous evaluation for
validation and testing. Besides, our proposed approaches do not in-
volve fine-tuning currently. Therefore we only use the training part
provided by the competition including 5000 data items with instruc-
tion, input and output for our evaluation. There are 12 categories
in total, including building, transport, astronomy, organization, etc.
And different categories may contain the same relationships. Due
to the high cost of calling the LLM API, we randomly select 1000
data for our experiments for testing. To avoid the negative impact
of the possible distinct quantity of different categories, 90 examples
were randomly and uniformly selected per category from the rest
to build the example pool for in-context learning.

4.1.2 Metrics. The performance of our methods is evaluated using
graph-level and entity-level metrics to provide a holistic view of the
effectiveness of LLMs for KGC. We employ the metrics of precision,
recall, F1-score and ROUGE-2 to quantify the performance on graph
level, while precision, recall and F1-score for entity-level evaluation.

It is worth noting that the graph-level metric ROUGE-2 we used
is different from the one defined in the competition. During the
whole evaluation process, we treat entity as a basic unit, which
means that exact match is conducted on both entity and tuple-
level. And the evaluation metric adopted in the competition is
treating the whole output as a string. We debate that this approach
is not as meaningful as ours because there may be unreasonable
combinations of two neighboring triples. Thus, our results are not
comparable with other results from the competition. In order to
gauge the similarity between the predicted knowledge and the
golden knowledge, we utilize the overlap of N-grams. This involves
converting the predicted knowledge and the golden knowledge
with triple format into pairs of two elements, i.e. convert the triples

(ℎ, 𝑟, 𝑡) into two pairs (ℎ, 𝑟 ) and (𝑟, 𝑡). Subsequently, these pairs are
employed in the computation of ROUGE-N [16], with N set to 2.

4.1.3 Implementation Details. Experiments are conducted using
GPT-4 model from OpenAI3. It is a large multilingual model that
accepts text or image inputs and emits text outputs and the longest
context can be up to 8,192 tokens. For the model parameters, we
set the maximum output length to 8,192 tokens. Temperature is set
to 1.0, and others to the defaults, for example, top-p to 1.

We choose the method of zero-shot learning as the baseline,
which directly prompts with instructions and input into the model
and generates outputs. This corresponds to the base method of the
baseline EasyInstruct4provided by CCKS2023.

Before the methods are implemented, the training dataset from
the competition is split into an example pool set and a predicting
set, and similarities between examples and predicting text are cal-
culated beforehand for ease of later implementation. During the
experiments, different fields from examples and additional informa-
tion are concatenated and fed into the LLM, generating text strings
as outputs. Subsequently, the generated outputs are formalized
with regular expressions to transform text strings into ideal entity
relation triples.

4.2 Results
Our experimental results of the graph-level evaluation and entity-
level evaluation are shown in Table 1 and 2 respectively. In our
research, we compare the end-to-end approaches in the following
settings: zero-shot learning as the baseline, zero-shot learning with
CoT, few-shot learning (we set to 3-shot learning) with different
example selection strategies and few-shot learningwith implicit and

3https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
4https://github.com/zjunlp/EasyInstruct
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Few-shot learning prompt with implicit self-reflection

# Example 1:
Instruction:
Given a list of candidate relations: [’Alias’, ’Type’], please extract possible subject and object entities the following input based

on the relation list and provide the corresponding relationship triples. Please respond in the format (Subject, Relation, Object).
Input:
Tianyin Zengsan (i.e. 13Tau) is an augmenting star of the Pleiades in the ancient Chinese system of astrological officials, and is

located in the constellation of Taurus according to the modern classification of Western constellations. It has a surface

temperature of 11,000-25,000 K, a colour index of -0.016, and an absolute magnitude of about 0.187.
Output:
The correct output triples should be: (Tianyin Zeng San, Alias, 13Tau), (Xingguan, Type, constellation),

(Tianyin Xingguan, Type, constellation), (Pleiades, Type, constellation), (Taurus, Type, constellation)
# Example 2:
Instruction:
...
Compare the generated triples with the actual triples and summarize the errors, avoiding them in the following tasks.
# Question:
Instruction:
Given a list of candidate relations: [’Alias’, ’Belongs to’, ’Type”], please extract possible subject and object entities the following

input based on the relation list and provide the corresponding relationship triples. Please respond in the format

(Subject, Relation, Object).
Input:
79b Cetus (also known as HD 16141b) is an exoplanet in the constellation Cetus with an orbital period of 75 Earth days around 79

Cetus. It and HD 46375b were both discovered on 29 March 2000, and were the first exoplanets discovered with lower mass limits

smaller than Saturn.
Output:
(79b Cetus, Alias, HD16141b), (79b Cetus, Belongs to, Cetus), (79b Cetus, Type, exoplanet), (HD46375b, Belongs to, Cetus),

(HD46375b, Type, exoplanet)

Figure 3: Few-shot learning prompt template with implicit self-reflection used for instruction-driven knowledge graph
construction (Purple colored text from examples, green colored text from GPT-4’s output).

Methods Selection Precision Recall F1-Score ROUGE-2

End-to-end

Zero-shot Learning No 27.28 17.49 21.31 28.08
Zero-shot Learning (CoT) No 24.00 17.46 20.21 30.54

Few-shot Learning

Fixed 31.33 24.29 27.37 39.24
Random 30.67 24.72 27.37 40.05
Category 37.93 33.55 35.61 49.35
Similarity 31.19 25.33 27.96 40.16

Few-shot Learning (𝑆𝑅𝑖 ) Category 41.01 33.86 37.10 47.79
Few-shot Learning (𝑆𝑅𝑒 ) Category 39.58 34.88 37.08 49.55

Pipeline-based Zero-shot Learning No 23.29 16.39 19.24 28.68
Table 1: Graph-level evaluation results. CoT: Chain-of-Thought, 𝑆𝑅𝑖 : Implicit self-reflection, 𝑆𝑅𝑒 : Explicit self-reflection.
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Few-shot learning prompt with explicit self-reflection

# Example 1:
Instruction:
Given a list of candidate relations: [’Discoverer’, ’Origin of name’], please extract possible subject and object entities the following

input based on the relation list and provide the corresponding relationship triples. Please respond in the format

(Subject, Relation, Object).
Input:
The Italian astronomer Galileo Galilei discovered Io in January 1610 along with three other large moons of Jupiter (Io, Io and Io).

Io takes its name from Callisto, one of Zeus’ lovers in Greek mythology, a nymph (sometimes thought to be the daughter of

Lycaon) who was close to the moon goddess Artemis. Simon Marius suggested the name shortly after the star was discovered, and

Marius attributed it to Johannes Kepler. However astronomers did not welcome the name for a long time, and it was not widely

adopted until the mid-20th century. Many early astronomical texts refer to the moon by its Roman numeral (a system proposed by

Galileo), i.e. as Jupiter IV or "the fourth satellite of Jupiter".
The correct triples are:
(Io, Discoverer, Galileo), (Io, Discoverer, Galileo), (Io, Discoverer, Galileo), (Io, Discoverer, Simon Marius), (Io, Discoverer, Galileo),

(Io, Discoverer, Galileo), (Jupiter, Origin of name, Jupiter)

The error generated by themodel is: The output of the model is correct for the four moons discovered by Galileo (Io, Io, Io and Io),

but the model does not provide the correct output for Simon Marius, the discoverer of Io. Also, the model does not give the correct

triad that the origin of Jupiter’s name is Jupiter. In the output ternary, the model incorrectly gives

(Io, ’origin of the name’, ’Callisto’), which is wrong, Io was not named by ’Callisto’. In summary, the model has a correct

understanding of some basic astronomical knowledge, but still has some errors when dealing with specific knowledge facts. The

model may need further training to improve its accuracy in processing specific knowledge facts. Avoid these errors in the next

tasks.
# Example 2:
Instruction:
...
Avoid these errors in the following tasks.
# Question:
Instruction:
Given a list of candidate relations: [’Alias’, ’Belongs to’, ’Type”], please extract possible subject and object entities the following

input based on the relation list and provide the corresponding relationship triples. Please respond in the format

(Subject, Relation, Object).
Input:
79b Cetus (also known as HD 16141b) is an exoplanet in the constellation Cetus with an orbital period of 75 Earth days around 79

Cetus. It and HD 46375b were both discovered on 29 March 2000, and were the first exoplanets discovered with lower mass limits

smaller than Saturn.
Output:
(79b Cetus, Alias, HD16141b), (79b Cetus, Belongs to, Cetus), (79b Cetus, Type, exoplanet), (HD46375b, Type, exoplanet)

Figure 4: Few-shot learning prompt template with explicit self-reflection used for instruction-driven knowledge graph con-
struction (Purple colored text from examples, green colored text from GPT-4’s output).

explicit self-reflection. Additionally, we also implement a pipeline-
based approach that splits the KG construction process into named
entity recognition, coreference resolution, and relation extraction.

As our baseline, in the zero-shot learning, where no specific
examples were provided to the model beforehand, we observed a
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1 {

2 "id": "0",

3 "cate": ["transport", "instruction"],

4 "instruction": "A list of known candidate relationships, ['Creation time',

5 'Administrative territory', 'Station class', 'Route', 'Postal code'],

6 please extract the possible head entity (Subject) and tail entity

7 (Object) from the following inputs, based on the list of relationships,

8 and give the corresponding relationship triples. Please answer in the

9 format (Subject,Relation,Object).",

10 "input": "Shaheji Station is a railway station on the Beijing-Shanghai line, located

11 in Longting Community, Shahe Town, Nanqiao District, Chuzhou City,

12 Anhui Province, built in 1909, currently a ..." ,

13 "output": "(Shaheji Station, line, Beijing-Shanghai Line),

14 (Shaheji Station, administrative territory, Longting Community),

15 ...

16 (Shaheji Station, postal code, 239060),

17 (Beijing-Shanghai line, administrative territory, Longting community)",

18 "kg": [["Shaheji Station", "line", "Beijing-Shanghai Line"], ["..."]]

19 }

Listing 1: Example data from CCKS 2023 competition Task 1

Approaches Methods Selection Precision Recall F1-Score

End-to-end

Zero-shot Learning No 57.89 48.61 52.85
Zero-shot Learning (CoT) No 52.17 46.11 48.95

Few-shot learning

Fixed 64.03 59.68 61.78
Random 62.40 59.73 61.04
Category 66.44 67.76 67.10
Similarity 62.29 60.19 61.22

Few-shot Learning (𝑆𝑅𝑖 ) Category 67.14 64.57 65.83
Few-shot Learning (𝑆𝑅𝑒 ) Category 65.89 65.36 65.62

Pipeline-based Zero-shot Learning No 56.33 50.73 53.39
Table 2: Entity-level evaluation results in percentage. CoT: Chain-of-Thought, 𝑆𝑅𝑖 : Implicit self-reflection, 𝑆𝑅𝑒 : Explicit self-
reflection.

precision of 27.28%, a recall of 17.49%, an F1-score of 21.31%, and
a ROUGE-2 score of 28.08% for KG construction and a precision
of 57.89%, a recall of 48.61%, and an F1-score of 52.8% for entity
recognition. The introduction of CoT in zero-shot learning yielded a
slightly lower performance and improved only the ROUGE-2 score
to 30.54%.

In the few-shot learning approaches, the application of a fixed
set of examples resulted in improved precision, recall, F1-score, and
ROUGE-2 on the graph level as well as precision, recall and F1-score
on the entity level, indicating that providing the model with specific
examples enhances performance. The random selection strategy
showed similar results to the fixed selection, while category-based
selection significantly outperformed other methods, achieving a
precision of 37.93%, recall of 33.55%, and the highest F1-score and

ROUGE-2 score among the few-shot learning, with 35.61% and
49.35% respectively. The similarity-based selection method did not
perform as well as the category-based but did surpass the fixed
and random strategies in terms of the ROUGE-2 score. The limita-
tion may stem from the similarity function employed, which might
not capture adequate semantic information. Different embedding
methods and similarity functions could be explored. Notably, our
proposed approach, few-shot learning with implicit and explicit
verbal self-reflection, denoted as 𝑆𝑅𝑖 and 𝑆𝑅𝑒 respectively, further
improved the results. The implicit method (𝑆𝑅𝑖 ) achieved the high-
est precision of 41.01% and a strong F1-score of 37.10%, while the
explicit method (𝑆𝑅𝑖 ) resulted in the highest recall of 34.88% and
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the highest ROUGE-2 score of 49.55%. However, in terms of en-
tity recognition, self-reflection approaches yielded a slightly lower
performance.

In contrast, the pipeline-based approach with zero-shot learning,
which did not utilize the few-shot learning advantages, resulted
in the lowest scores across all metrics, with a precision of 23.29%,
recall of 16.39%, F1-score of 19.24%, and ROUGE-2 score of 28.68%
for KG construction.

4.3 Discussions
Applying the few-shot learning of GPT-4 significantly improves the
performance of KGC compared to the zero-shot baseline. Specifi-
cally, the category-based example selection strategy outperforms
others, achieving the highest precision, recall, F1-score, and ROUGE-
2 score in most cases, which indicates that the relevance and repre-
sentativeness of examples play a crucial role in enhancing themodel
performance. Our proposed self-reflectionmechanism, both implicit
and explicit, further enhances the model’s capability to generate
accurate and reliable KG triples. The implicit self-reflection method
achieved the highest precision, while the explicit self-reflection
method resulted in the highest recall and ROUGE-2 score. This
shows the potential of self-reflection in improving the in-context
learning process by enabling the model to learn from its mistakes.
The zero-shot learning approach, as well as with Chain-of-Thought
(CoT) prompting, falls short in performance compared to few-shot
learning methods, which shows the importance of providing con-
textual examples to guide the model outputs effectively.

The similarity-based selection strategies in our evaluation did
not achieve the expected performance, the underperformance of
similarity-based selection could be the limitations of the similar-
ity measurement technique used. In our implementation, we uti-
lized SentenceBERT with the paraphrase-MiniLM-L12-v2 model
to calculate cosine similarities. While this model is effective for
general sentence embeddings, it may not capture the semantic re-
lationships required for effective KGC, particularly in specialized
domains. Another reason is that input text from different cate-
gories could be similar, but their relation lists are different, such
as Building, Geographic Location, and Transport. Few-shot learn-
ing is still dependent on the quality and diversity of the labeled
data pool. In real-world scenarios, the availability of such labeled
data can be a limitation. One of the challenges in implementing
our proposed methods is the high cost associated with calling the
OpenAI API, which limits the scalability of our approach. Moreover,
our evaluation primarily focuses on precision, recall, F1-score, and
ROUGE-2 scores. While these metrics provide a good indication
of performance, they may not fully capture the semantic accuracy
and usefulness of the constructed knowledge graphs. Future work
should explore more sophisticated and holistic evaluation metrics.
Besides, it’s hard to accurately extract desired entities, i.e., enti-
ties ranging from a single character to a phrase may be extracted,
resulting in low precision and error propagation.

5 CONCLUSION
In this paper, we explore methods that leverage the in-context learn-
ing capabilities of LLMs, especially GPT-4, for instruction-driven
adaptive KG construction and propose a self-reflection mechanism

that reflects on errors from examples. Experiments show that ex-
ample selection is essential for few-shot learning of LLMs and
demonstrate the superiority of our proposed method in terms of
KG construction. We hope the methodology, evaluation, and find-
ings presented in this paper will serve as a good starting point to
explore effective interactions between LLMs and KGs. Our study
may also motivate data management researchers and experts inter-
ested in exploring the synergy between LLMs and KGs to discuss
this topic further.

In future work, we would like to investigate more sophisticated
metrics and algorithms for selecting examples and further refine
the quality of examples used for in-context learning, including
exploration beyond BERTScore and OpenAI embedding to newer
semantic similarity measures. Furthermore, as the labelled data pool
is not always available, we would like to explore the possibility of
using semi-supervised methods to build the annotated data pool.
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