
XCrowd: Real-Time Dynamic Crowd Movement Simulation
on Graph Networks

Jan Appel
Institute of Computer Science

Winterthur, Switzerland
appeljan@students.zhaw.ch

Andreas Weiler
Institute of Computer Science

Winterthur, Switzerland
andreas.weiler@zhaw.ch

ABSTRACT
We introduce XCrowd, an application that simulates human crowd
movements in large areas using graph networks. Although other
theoretical and simulation models exist, they fail to simultaneously
account for dynamic crowd movements, realistic visitor behav-
ior, and real-world disturbances. Our solution aims to bridge this
gap between theoretical amusement park optimization and real-
world operations. By representing park layouts as graph networks,
XCrowd is able to efficiently and realistically provide tools to evalu-
ate crowd behavior under specific conditions and, for example, help
validate the efficiency of a given park layout or simulate a certain
event. We discuss the methodology, implementation, evaluation
and validation of our model, as well as potential implications for
amusement park management and outline future directions, includ-
ing scalability, limitations, user experience, and address real-world
dynamic factors.

VLDBWorkshop Reference Format:
Jan Appel and Andreas Weiler. XCrowd: Real-Time Dynamic Crowd
Movement Simulation
on Graph Networks. VLDB 2024 Workshop: 3rd International Workshop on
Large-Scale Graph Data Analytics (LSGDA 2024).

1 INTRODUCTION AND MOTIVATION
Amusement parks, hosting millions of visitors annually, have be-
come key destinations for leisure and entertainment [8]. As with
any large event, such high visitor numbers require great efforts and
precision during planning in order to provide a smooth and safe
experience for all guests. Changes in ride availability or weather
conditions may lead to guests moving to different parts of the
amusement park or seeking shelter from the rain. Around the open-
ing and closing hours of an amusement park, some paths might
also experience a drastically higher load than during daytime oper-
ation. Most importantly, however, in case of an emergency, such
as a fire or a medical incident, the park management must be able
to respond quickly and ensure that emergency responders reach
the location in time as well as direct nearby guests away from the
affected area.

Although existing theoretical and simulation visitor models do
exist, they may fall short when simultaneously accounting for dy-
namic crowd movements, realistic visitor behavior and real-world

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

disturbances within amusement parks. These factors are often over-
looked in theoretical models, which may result in noticeable inac-
curacies when predicting visitor behavior and park efficiency. [12]

2 BACKGROUND & RELATEDWORK
Amusement parks are complex environments in which visitors
move across various attractions, food stalls, and facilities, creating
dynamic crowd patterns between different points of interest. Opti-
mizing visitor flow and park operations is crucial for ensuring an
enjoyable and safe experience for guests and hence maximizing the
park’s revenue.

Most theoretical models, such as the crowding analysis by Yuan
and Zheng [16] or the macro- to micro-level model by Ivancevic
et al. [3], as well as most simulative approaches such those as
presented in publications by Sung et al. [14] with their scalable
approach or Simonov et al. [11] in their multi-agent simulation,
focus on rather specific aspects of crowd dynamics.

Yuan and Zheng’s study on mitigating theme park crowding [16]
focuses on strategies to alleviate congestion through predictive
modeling and dynamic crowd management. By integrating factors
such as visitor behavior patterns, attraction capacities, and tem-
poral variations, they aim to enhance visitor distribution across
the park in real-time, improving operational efficiency and reduc-
ing wait times. Similarly, Ivancevic et al.’s macro- to micro-level
model [3] combines overall crowd density and movement patterns
with micro-level interactions between individual agents, providing
a framework for accurately simulating complex crowd scenarios,
including emergency evacuations and large public gatherings.

Sung et al. [14] introduce a scalable approach for crowd simula-
tion, utilizing a situation-based control structure that allows agents
to adapt their behaviors based on specific contexts. This method
enhances the realism of crowd simulations without significantly
increasing computational demands. Simonov et al.’s multi-agent
simulation [11] emphasizes scalability and flexibility, handling di-
verse scenarios from urban planning to disaster response by incor-
porating detailed agent behaviors and environmental factors.

Bridging this gap, XCrowd seeks to provide a solution by employ-
ing crowd simulation on graph networks to provide a realistic and
adaptable, yet computationally feasible approach to amusement
park management. We introduce XCrowd, detailing its methodol-
ogy, implementation, and potential implications for amusement
park management.

By offering a tool to evaluate crowd behavior under specific
conditions, XCrowd aims to help validate the efficiency of park
layouts and scheduling models, as well as the accuracy of theo-
retical scenarios, bringing an alternate perspective to the issue of

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


aligning theoretical amusement park optimization and real-world
operations.

3 APPROACH
3.1 Technology & Model
XCrowd is designed as a client-side web application in order to
offer real-time simulation capabilities and easy-to-access cross-
platform support. It makes use of the Pixi.js graphic engine [2] for
efficient rendering. The core of the simulation relies on a linked
graph structure such as shown in Figure 1, which effectively models
the layout and pathways within an amusement park. Here, nodes
can represent either curves and crossings of a path or points of
interest (POI). In case a node represents a POI, it is assigned one of
the node behaviors shown in Figure 2. This will change the node’s
behavior – the Entrance node, for example, will allow visitors to
enter the park – and allow guests to choose these nodes as their
next stop in order to visit a ride on their list or satisfy a need.

Figure 1: A simple linked graph as can be created in the
application’s editor.Dots represent nodes (cross junctions) and
lines represent edges (paths). Thickness and length together
represent the capacity of an edge. Arrowheads are displayed if
a path is directed and passable one-way only.

Figure 2: The node behaviors available in XCrowd. From left
to right: Park entrance – roller coaster or similar attraction
– food stand or restaurant – drink stand – bench or resting
place – restroom – footpath.

When entering the amusement park, in order to be created at an
entrance node, the guest needs to choose a set of attractions they
unconditionally want to visit. This is meant to mimic how most
park guests have certain rides they definitely want to try, such as
Europa-Park’s Silver Star or Blue Fire roller coasters. Currently, a
list of three to seven nodes of type roller coaster is chosen at random
and a route to the first POI is computed. Once a guest reaches a
POI, the corresponding needs are satisfied, the next POI is chosen

based on the guest’s current needs, and a new path is computed.
For example, if a person reaches a roller coaster node, the value
for boredom is reduced and the value for nausea might rise. Now,
the highest value among the person’s needs might be hunger, so a
node of type restaurant is chosen next. Reaching it will reduce the
guest’s hunger and thirst values. This goes on until the guest has
visited all POI on their list, upon which a route back to an entrance
node is computed and the guest is removed.

The pathfinding algorithm, at its core, relies on Dijkstra’s algo-
rithm. Additionally, however, to make sure visitors avoid congested
paths as well as to simulate slight acts of human randomness, each
distance is multiplied by a punishment factor punishment(𝑒) and a
slight random factor.

The cost of an edge 𝑒 is then computed as

cost(𝑒) = distance(𝑒) · punishment(𝑒) · (𝑟 · 0.5 + 0.75), (1)

with

punishment(𝑒) = 1 + 100
(𝛿 + 1)100

, (2)

where

𝛿 =
max(0, currentCapacity − neededCapacity)

maximumCapacity
(3)

and 𝑟 is a random value between 0 and 1.
This computation uses an edge’s capacity valuemaximumCapacity,

ranging from 0 to ∞. It denotes how many people may be on a cer-
tain section of the path at the same time. Further, neededCapacity
denotes the space needed for a person to enter the edge, which
is always 1 but could be changed to allow for groups of people.
Lastly, the edge’s current capacity currentCapacity is defined by
the currently remaining space. It is also possible for an edge to be
directed, as it is often the case in queues in front of attractions, in
which case the pathfinding algorithm considers the edge in one
direction only.

As performance tests have confirmed, a modern personal com-
puter is capable of simulating several thousand visitors in real-time.
To ensure realistic pathfinding, XCrowd employs a modified ver-
sion of Dijkstra’s algorithm that takes into account the current
capacity of edges, allowing visitors to navigate the park and avoid
congestion in a manner reflective of real-world crowd dynamics.
The application utilizes a real amusement park map as its founda-
tional base, providing a realistic reference for creating the graph
network.

To aid the process, XCrowd offers an easy-to-use graphical editor
shown in Figure 3 that lets the user create and modify a graph
network based on a reference background image. In addition, an
analytics tool helps record the simulation data every 𝑛 frames and
saves it in a CSV file for further processing.

A publicly accessible instance of XCrowd in its current form
for readers to interact with and assess the project is available at
https://xcrowd.cloudlab.zhaw.ch/.

3.2 Implementation
To facilitate the set-up and usage of XCrowd as much as possible,
the software is implemented as a Node.js application [6] using the

https://xcrowd.cloudlab.zhaw.ch/


Figure 3: The graphical editor in XCrowd. Users can create and modify graph networks based on a reference background image,
even with the simulation still running.

Express.js framework [5], providing a robust base layer for serv-
ing resources and handling HTTP traffic. Since early performance
tests showed that up to several thousand visitors can be simulated
on a standard computer without major performance impacts, we
opted for a client-side web application to allow for real-time sim-
ulation capabilities with minimal latency. The rendering is done
using Pixi.js [2], a highly efficient WebGL-based rendering engine.
Further, we make use of jQuery [4] for DOM manipulation and
Toastify.js [15] for displaying status notifications.

A GraphMap object holds a set of MapNodes and MapEdges, which
represent the park’s layout. Each MapNode knows its properties
such as its coordinates or the type of location it represents, as well
as which MapEdges are connected to it. Each MapEdge knows its
properties such as its length, the MapNodes it connects, its capacity
and whether it is directed. The MapEdge also tracks the number
of Persons currently on it as this is necessary for the congestion
avoidance factor in the pathfinding algorithm.

Park visitors are represented as Person objects. When they are
created at a MapNodewhose NodeBehaviour is of type MapEntrance,
which allows Persons to enter and exit the park, they are assigned
a list of stops they need to visit. Upon initialization, the Person’s
route to the first stop is computed using a modified version of Dijk-
stra’s algorithm that takes into account the current congestion of
the MapEdges as well as random factors.

The simulation is run in discrete steps, each representing a small
unit of time. They are known as ticks or frames. Due to the nature
of the simulation and varying computational load, the duration
of a tick is not necessarily fixed. Instead, the simulation tries to
run at a fixed frame rate, which in XCrowd is set to 60 frames per
second, but may drop below this rate if the computational load is
too high. In this case, the simulation will try to catch up in the
next frame by simulating a slightly longer time span. This is done
by multiplying the time passed since the last frame by a factor
called delta time, which is the ratio of the current frame rate to the
target frame rate. This way, the simulation will always run at the
same speed, regardless of the computational load. Note, however,
that this requires paying special attention when implementing the
simulation, as the simulation code must be written in a way that
ensures that the simulation’s state changes are consistent regardless
of the frame rate.

Each simulation step, each Person object moves along its current
MapEdge. Once it reaches a MapNode, one of two possible events may
have occurred: Either, the Person has reached its next stop, which
is for example the last MapNode on the Person’s current route. If
so, the stop is removed from the Person’s attraction list and a new
route to the next stop is computed. The next stop is chosen based
on the Person’s attraction list, current needs and position within
the park. Alternatively, the Person has simply reached a MapNode
along its current route, in which case the Person checks whether



the next MapEdge’s current capacity is greater than zero i.e.whether
there is space for the Person to enter. If so, the Person leaves its
current MapEdge and enters the next one, updating any relevant
counters. Otherwise, a new route to the next stop is computed. This
way, the Person will try to avoid congested pathways and might
find a way around the congestion much like a real-world visitor
would.

Since in some circumstances of high congestion, the Persons
may not be able to find a route to their next stop and end up calling
the route computing algorithm over and over, we introduced a
cooldown of 20 simulation steps for each Person. This way, the
Person will simply wait for up to 20 simulation steps (1/3s) before
trying to find a new route, which reduces the computational load
dramatically.

Even though under specific circumstances, a situation may oc-
cur in which the Persons on a MapEdge are unevenly distributed,
this poses no problem in the overall simulation as this effect is
only noticeable on GraphMaps with very few or very long and slim
MapEdges and vanishes as the GraphMap becomes more detailed.

4 RESULTS
4.1 Simulation Set-up
We chose to test our model on the Europa-Park in Rust, Germany,
which in 2022 was Europe’s second most visited amusement park
after Disney Land in Paris, France. Each year, a total of around 5.4
million guests visit Europa-Park. With the park being open for 294
out of 365 days a year, and official opening hours going from 9:00
o’clock in the morning to 6:00 o’clock in the evening, this equates
to ∼2’040 guests per hour or about 0.57 visitors per second. [8]
With each simulation tick, a slightly randomised number of people
𝑝 is let into the park, with E[𝑝] = 0.57/𝑡 and 𝑡 being the number of
simulation ticks per second. Note that this approach does not take
into account varying visitor numbers throughout the day or year,
such as increased crowds at the park entrance in the morning or
lower visitor numbers during the winter season.

For the layout of the graph network, we used freely available
map tiles from OpenStreetMap [7] as the base layer on which we
then traced paths and placed POI using XCrowd’s editor according
to the reference. It is important to highlight that, since we were
not able to retrieve official data on the park’s paths, the paths’
capacities were estimated based on their length and width, among
other features such as surrounding geometry. An overview of the
final graph network is shown in Figure 4.

Since simulating human needs is quite a complex task, we de-
cided to simplify the model by only considering the most basic
needs, such as hunger, thirst, and tiredness among others. We took
inspiration from existing simulations of park guests, such as the
video game series RollerCoaster Tycoon [10], to narrow down the
relevant needs and their recovery times. As laid out in Figure 5,
each visitor’s needs are set at random upon entering the park and
changed over the course of the visit according to the corresponding
recovery time. For example, a guest might not need to eat again
within 2 hours of having a meal, but wants to get back on an at-
traction in less than half an hour after their last roller coaster ride.
The guest’s other properties are assigned at random as well: The
walking speed is based on previous research done by Rastogi et

al. [9] and varies between 60 and 70𝑚/𝑚𝑖𝑛 ≈ 1.08 ± 0.08𝑚/𝑠. Addi-
tionally, as mentioned in Section 3.1, each guest chooses a list of
obligatory nodes of type roller coaster to visit. Its three to seven
items are assigned at random.

4.2 Evaluation
To evaluate the accuracy of our model, we chose to compare the
resulting simulation data to real-world data. As we did not have
access to exact or official visitor numbers, let alone the precise
figures for individual sections of the path that would have been
required, retrieving a ground truth dataset was rather difficult.

We opted to use GPS tracking data provided by Strava, a social
network focused on tracking physical exercise, with over 100 mil-
lion community members registered. Anonymised GPS trails of all
users are publicly available in the form of a heat map. [13]

To be able to compare our simulation results from XCrowd to
the real-world reference, we reconstructed the heat map using the
tiles streamed to the Strava client. In addition, we determined the
gradient map used for rendering the heat map, also by analyzing
the Strava client. Although no documentation is given, the values
seems to follow an exponential curve.

To facilitate the sampling process, we created a script with a
graphical user interface (GUI), shown in Figure 6, that allows the
user to select a coordinate on the heat map, which is then looked
up in the gradient map and displayed as a final busyness value.

Obtaining equivalent values for each graph edge in the simula-
tion was done by taking snapshots of the state of the graph during
the simulation. Afterwards, the number of people on each edge was
averaged out over all recorded simulation frames. The simulation
was run for one hour in simulated time on 10× real-time speed.
Only frames 2000 and later were considered, to leave enough time
for the simulation to stabilise.

The sampling is done at the centre coordinate of each of 73
randomly chosen edges in the graph, resulting in pairs of a busyness
value sampled from the heat map and a busyness value measured
using XCrowd’s analytics tool each.

4.3 Validation
Before moving to the validation, we remove one outlier from the
dataset: Edge #377 has a measured busyness value of almost zero.
We assume that, purely by chance, the analytics tool took most
snapshots of the simulation when no guests were using this quite
short path. As surrounding edges only reachable by edge #377
report reasonable values, we may safely assume edge #377 to be an
outlier and will be doing all further computations without it.

4.3.1 Simulation Accuracy. To validate our simulationmodel against
ground truth, we compare the simulated busyness value of an edge
to its real-world counterpart on the heat map, as illustrated in Fig-
ure 11. The correlation plot is shown in Figure 7. Note that, since the
heat map value scale is exponential, we use the natural logarithm
log(𝑏) for our simulated values when comparing them to values
sampled from the heat map.

A Pearson correlation test confirms a significant correlation
between the simulated and reference values with a correlation
coefficient 𝜌 ≈ 0.704 and a 𝑝-value of around 5.529× 10−12 ≪ 0.05.



Figure 4: Overview of the XCrowd application interface. Dots represent nodes of types shown in Figure fig:node-behaviours, black
lines of different thickness represent edges of different capacity, and red dots represent people. The park layout used for reference is
Europa-Park in Rust, Germany and was rendered from publicly available OpenStreetMap data. [7]

Need Default Recovery Time

Bladder 0.8 · 𝑟 2 h

Boredom 0.5 · 𝑟 30 min

Hunger 0.5 · 𝑟 2 h

Nausea 0.2 · 𝑟 15 min

Thirst 0.75 · 𝑟 1 h

Tiredness 0.05 · 𝑟 2 h

Figure 5: The guests’ needs. The default values are set when
the guest is created, with 𝑟 being a random value between 0 and
1. Recovery times determine how quickly a need fully changes
during a visit.

4.3.2 Simulation Consistency. Although the spread in Figure 7
does seem rather consistent between edges of different capacity, we
can confirm this by performing separate correlation tests on two
different groups. We split the set of edges into groups of equal size,
ordered by capacity. With a median capacity of 50 people, group
𝐴 contains 37 edges of capacity 𝑐 ≤ 50 and group 𝐵 contains 35
edges of capacity 𝑐 > 50. In addition to the plots in Figure 8, we
confirm their individual correlations through two more Pearson

correlation tests with resulting correlation coefficients of 𝜌𝐴 ≈
0.683, 𝜌𝐵 ≈ 0.492 and 𝑝-values of 𝑝𝐴 ≈ 3.226 × 10−6 ≪ 0.05, 𝑝𝐵 ≈
2.680 × 10−3 < 0.05.

4.3.3 Parameter Accuracy. Since the capacity values of the graph’s
edges are pure estimations, it is helpful to see how well our estima-
tions hold up. By plotting the busyness and capacity for each edge
in Figure 9, we notice that no edge’s relative simulated busyness is
higher than 34%, i.e. all edges operate well below their capacities.

As none of the average busyness values are anywhere near
their maximum capacities, we may assume that either the paths in
Europa-Park allow for a number of guests well above usual demand
or our estimated capacities were consistently too high. Without any
official data, however, it is not possible to confirm this hypothesis.

The fact that the edges’ capacities were not a limiting factor
for the simulated visitor flow allows us to perform another check
confirming that the visitors in the simulation actually demonstrate
realistic movement patterns. Although the edges’ estimated capac-
ities may have been consistently too high, they are likely to be
accurate relative to each other. Thus, they should be able to serve
as a rough guide for capacity comparisons among each other and
we should be able to tell whether visitors show a similar movement
distribution to the real world. To confirm this behavior, we plot
the edges’ simulated busyness against their estimated capacities
in Figure 10. Another correlation test also confirms a significant



Figure 6: The heat map sampler GUI.When selecting a coordi-
nate in the top heat map, the script calculates and displays the
corresponding path’s busyness value on the bottom gradient.

Figure 7: Simulated busyness vs. ground truth. Opacity repre-
sents the capacity of an edge.

correlation with a correlation coefficient of 𝜌 ≈ 0.643 and a 𝑝-value
of 1.103 × 10−9 ≪ 0.05.

5 DISCUSSION & FUTUREWORK
As mentioned in Section 3.1, the POI on a visitor’s must-visit attrac-
tions list are chosen at random, not taking into account a specific
ride’s popularity, for example, which may shift the busy areas in
the park away from the real-world hotspots. Furthermore, as was

(a) Group 𝐴 with 𝑐 ≤ 50

(b) Group 𝐵 with 𝑐 > 50

Figure 8: Simulated busyness vs. ground truth. Opacity repre-
sents the capacity of an edge.

shown in Section 4.3.3, the guests never fully use up any edge’s
capacity and are thus rarely repelled by congestion. Whether this
is a realistic assumption is unclear but it should be noted that this
could be another contributing factor. Finally, it is noteworthy that
the status of the two data sources (the OpenStreetMap tiles and
the Strava heat map) is different, partly due to recent conversions
and renovations at Europa-Park. [1] Given these circumstances, the
results are reasonable.

As was shown during the validation process in Section 4.3,
XCrowd in its current form is a useful and accurate simulation
tool whose primary functionality is implemented. However, future
improvements to the software and reference data could greatly
increase the simulation’s accuracy and consistency.

Better reference data such as amore precise park layout or official
path capacities and more fine-grained visitor numbers throughout



(a) Absolute

(b) Relative

Figure 9: Edges vs. simulated busyness. Edges are sorted by
estimated absolute capacity and busyness and by relative sim-
ulated busyness, respectively.

the day would greatly improve the simulation parameters and thus
increase the likeliness of an accurate simulation.

During the simulation, by far the most time-consuming oper-
ation is the pathfinding algorithm, run each time a new visitor
enters the park or a current guest wants to find a route to a new
destination. Reducing the computation time and improving the
performance would allow for larger and more complex parks and
the implementation of more possibilities and a more authentic
simulation, such as realistic wait times for rides, restaurants and
similar POI, alternative ways for guests to move around the park,
e.g. Europa-Park’s Monorail, or dynamic events like emergencies or
weather changes. In order to maximize the potential for efficiency,
the software should shift to a compiled language and make use of
server-side computation, only streaming the results to the client.
Multi-core computation would be ideal for a multi-agent simulation
like this one.

Figure 10: Simulated busyness vs. estimated capacity. Even
without being limited in their decisions, simulated park guests
follow realistically plausible routes.

Although the usage of XCrowd in this paper focuses solely on
amusement parks, the software is not limited to this domain. The
simulation can be applied to various scenarios, such as public trans-
portation, shopping malls, or event management, where crowd
movements play a crucial role.

Future iterations should also focus on improving the user in-
terface and experience. This includes working on the simulation
customization options, the map editing tools, and the inspector
capabilities, making the software more intuitive and user-friendly
for theme park managers and planners.

To enhance compatibility and streamline the workflow, XCrowd
could support common standards and allow direct import of data
such as the park’s expected visitor numbers, opening hours, or
geographical layout without any additional manual work. This
would facilitate the integration of real-world park semantics and
enable users to work with a wider range of data sources seamlessly.

XCrowd offers a vision for the future of amusement park man-
agement evaluation by combining theoretical models with a more
realistic crowd simulation. The software helps gain valuable in-
sights into visitor behaviours and park dynamics, paving the way
for more informed decision-making and enhanced visitor experi-
ences.

REFERENCES
[1] 2024. Europa-Park investiert in mehr als 40 Bauprojekte. Europa-Park-Presse

(2024). https://presse.europapark.com/de/presse/nachricht/datum/2024/01/23/
europa-park-investiert-in-mehr-als-40-bauprojekte

[2] Mat Groves, Matt Karl, Sean Burns, Andrew Start, Shukant Kumar Pal, Milton
Candelero, Tianlan Zhou, Viktor Persson, and Dmytro Soldatov. [n.d.]. PixiJS.
https://pixijs.com/

[3] Vladimir G Ivancevic, Darryn J Reid, and Eugene V Aidman. 2010. Crowd
behavior dynamics: entropic path-integral model. Nonlinear dynamics 59 (2010),
351–373.

[4] John Resig and jQuery contributors. 2006. jQuery. https://jquery.com/.
[5] OpenJS Foundation and Express.js contributors. 2010. Express.js. https:

//expressjs.com/.
[6] OpenJS Foundation and Node.js contributors. 2009. Node.js. https://nodejs.org/.

https://presse.europapark.com/de/presse/nachricht/datum/2024/01/23/europa-park-investiert-in-mehr-als-40-bauprojekte
https://presse.europapark.com/de/presse/nachricht/datum/2024/01/23/europa-park-investiert-in-mehr-als-40-bauprojekte
https://pixijs.com/
https://jquery.com/
https://expressjs.com/
https://expressjs.com/
https://nodejs.org/


Figure 11: The heat map overlaid on top of XCrowd’s map overview. The brighter a pixel is on the heat map, the busier it is.
Black means no recorded activity while bright areas resemble a large number of GPS tracks.

[7] OpenStreetMap contributors. 2017. Planet dump retrieved from OpenStreetMap.
https://www.openstreetmap.org

[8] Martin Palicki, Beth Chang, Linda Cheu, John Dietz, Doris Li, Jodie Lock, Andrew
Logan, Daisy Long, Jason Marshall, Michael Posso, Francisco Refuerzo, Catherine
Ritter, John Robinett, Chris Yoshii, and Skyler Young. 2022. Museum Index:
Theme Index 2022. TEA/AECOM Global Attractions Attendance Report (2022).

[9] Rajat Rastogi, Ilango Thaniarasu, and Satish Chandra. 2011. Design implications
of walking speed for pedestrian facilities. Journal of transportation engineering
137, 10 (2011), 687–696.

[10] RollerCoaster Tycoon Wiki. [n.d.]. Guests and Staff. https://rct.fandom.com/
wiki/Guests_and_Staff

[11] Andrey Simonov, Aleksandr Lebin, Bogdan Shcherbak, Aleksandr Zagarskikh,
and Andrey Karsakov. 2018. Multi-agent crowd simulation on large areas with
utility-based behavior models: Sochi Olympic Park Station use case. Procedia

Computer Science 136 (2018), 453–462.
[12] G Keith Still. 2000. Crowd Dynamics. Ph.D. Dissertation. University of Warwick

UK.
[13] Strava. 2024. Strava Global Heatmap. https://www.strava.com/maps/global-

heatmap
[14] Mankyu Sung, Michael Gleicher, and Stephen Chenney. 2004. Scalable behaviors

for crowd simulation. Computer Graphics Forum 23, 3 (2004), 519–528. https:
//doi.org/10.1111/j.1467-8659.2004.00783.x

[15] Varun Adiyeri Parambath and toastify.js contributors. 2017. toastify.js. https:
//apvarun.github.io/toastify-js/.

[16] Yuguo Yuan, Weimin Zheng, et al. 2018. How to mitigate theme park crowding?
A prospective coordination approach. Mathematical Problems in Engineering
2018 (2018).

https://www.openstreetmap.org
https://rct.fandom.com/wiki/Guests_and_Staff
https://rct.fandom.com/wiki/Guests_and_Staff
https://www.strava.com/maps/global-heatmap
https://www.strava.com/maps/global-heatmap
https://doi.org/10.1111/j.1467-8659.2004.00783.x
https://doi.org/10.1111/j.1467-8659.2004.00783.x
https://apvarun.github.io/toastify-js/
https://apvarun.github.io/toastify-js/

	Abstract
	1 Introduction and Motivation
	2 Background & Related Work
	3 Approach
	3.1 Technology & Model
	3.2 Implementation

	4 Results
	4.1 Simulation Set-up
	4.2 Evaluation
	4.3 Validation

	5 Discussion & Future Work
	References

