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ABSTRACT
Spatial Entity Resolution (SER), which aims to determine whether
different points of interest in the real world point to the same
spatial entity, is known to be a labour-intensive task. It contributes
to the quality of building high quality geospatial databases, which
in turn improves the quality of navigation, social networking and
logistics services. Existing SER methods are unable to achieve high
performance due to insufficient feature discovery or scarcity of
labelled data. We introduces MRG-SER, a self-supervised spatial
entity resolution framework based on multi-relational graphs. It
has the following advantages:(1) Automatic generation of high
quality positive and negative labels without manual labelling. (2)
Effective discovery of spatial entity neighbourhood features. MRG-
SER consists of two modules, i.e. Spatial Entity Automatic label
Generation (SEAG) and Multi-Relational Graph based Spatial Entity
Matching (MRG-SEM). SEAG is used to generate a set of high quality
positive and negative labels for training. In MRG-SEM, we first
construct spatial entity multi-relational graphs and extract graph
features by GNNs. Second, we combine the graph features, sentence
features and distance features of entities to collaboratively predict
whether entity pairs match or not. Experiments have demonstrated
the accuracy and validity of MRG-SER, which is even superior to
the most advanced supervised SER methods.
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1 INTRODUCTION
High-quality geospatial databases are crucial for enhancing the
effectiveness of Location-Based Services (LBS), such as navigation,
logistics, and targeted advertising. Spatial data, primarily composed
of spatial entities known as Points of Interest (POIs). These spatial
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Figure 1: Example of spatial entity resolution. (Green solid
and red dashed lines represent matched and unmatched spa-
tial entity pairs, respectively.)

entities typically include spatial attributes (e.g., longitude and lati-
tude) and textual attributes (e.g., name and address). However, the
representation of the same spatial entity can vary across different
data sources, resulting in duplication and inconsistency during data
integration. Consequently, spatial entity resolution (SER) has gar-
nered significant attention. SER aims to identify and match records
from different data sources that refer to the same real-world spatial
entity [2], thereby creating comprehensive, high-quality geospatial
databases.

Example 1.1. As shown in Fig. 1 ,𝑒1 and 𝑒4 are matches, but
there are synonyms (e.g., Avenue = Ave), address reversals, and low
name similarity; 𝑒2 and 𝑒5 are flagged as mismatches due to subtle
name differences (e.g., Lynn’s vs. Lynns); Rite Aid is a well-known
drugstore chain, and 𝑒3 and 𝑒6 are 1.3 kilometers apart, so they do
not match.

Existing research on spatial entity resolution is primarily cate-
gorized into rule-based [1, 5, 11, 22, 25, 27, 31] and learning-based
approaches [2, 3, 24]. Rule-based methods depend on expert domain
knowledge, which is often inflexible and challenging to apply across
different datasets. And learning-based methods require large-scale,
high-quality labeled data for training, which involves substantial
manpower and time costs. For instance [6], achieving F-measures
of approximately 99% with random forests may necessitate up to
1.5 million labels, which could require approximately 40 workers
around 2 months to complete. Therefore, we propose for the first
time to apply self-supervised learning to SER.
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Existing unsupervised entity resolution methods [4, 8, 30, 36]
are not suitable for SER. Ge et al. [8] introduced a self-supervised
entity resolution framework called CollaborEM. ZeroER [30] is an
innovative unsupervised entity resolution method that employs a
Gaussian mixture model to learn the distributions of matches and
mismatches. In conclusion, none of these methods consider the spa-
tial features of the entities themselves or the spatial neighbourhood
features between entities, rendering them unsuitable for SER. The
current challenges are therefore twofold, as set out below.

Challenge I: Spatial features affect the generation of labeled
data in self-supervised learning. Learning-based methods rely
on high-quality labelled data and have high time and labour costs.
Some self-supervised methods[8] are capable of automatically gen-
erating labelled data. However, longer attributes in spatial entities
(e.g., addresses) affect the quality of the marker generation and
reduce the accuracy of the model.

Challenge II: Spatial neighbourhood features between en-
tities are challenging to learn. Existing methods tend to evalu-
ate each pair of spatial entities in isolation, ignoring the complex
neighbourhood features between entities, and therefore fail to iden-
tify pairs of entities with significantly different names but belong-
ing to the same region. Some entity resolution methods construct
attribute-relationship graphs [4, 33] to explore the implicit relation-
ships between entities. However, these methods do not consider
spatial attributes, resulting in poor performance in spatial entity
resolution tasks.

Contributions. We propose MRG-SER, a self-supervised spa-
tial entity resolution framework based on multi-relational graphs.
MRG-SER consists of two modules, Spatial Entity Automatic la-
bel Generation (SEAG) and MRG-based Spatial Entity Matching
(MRG-SEM). The contributions of this paper are summarised as
follows:

• For Challenge I, we propose SEAG. This module investi-
gates reliable positive and negative label generation strate-
gies to enlarge the training samples and significantly reduce
the model’s dependence on labelled data.

• For Challenge II, we firstly constructed a Spatial Entity
Multi-relational Graph (SEMRG), which fully captures the
spatial neighbourhood graph features of the entities. Sec-
ondly, we propose the MRG-SEM, which combines graph
features, sentence features and distance features of spa-
tial entities to jointly predict the matching relationships
between entity pairs.

• Extensive experiments based on real urban spatial entity
data are performed and compared with existing state-of-
the-art algorithms to verify the effectiveness and feasibility
of MRG-SER.

2 RELATEDWORK
2.1 Entity resolution
Existing entity resolution efforts are mainly based on rule-based [7,
13, 29], crowdsourcing [9, 28]. Rule-based approaches offer high
interpretability but need to involve domain experts and suffer from
limited flexibility. Crowdsourcing methods rely on people’s judge-
ment, which can reduce accuracy and efficiency if the number or

Table 1: Notations and Descriptions in MRG-SER

Notation Description

𝐺 Multi-relational graph,𝐺 = {𝐸, 𝑅,𝐴}
𝐸 Nodes in𝐺 , 𝐸 = {𝐸𝐴, 𝐸𝑃 , 𝐸𝐴𝑡𝑡𝑟 }
𝐸𝐴 Set of AOIs in𝐺
𝐸𝑃 Set of POIs in𝐺
𝐸𝐴𝑡𝑡𝑟 Set of attributes in𝐺
𝑒 ∈ 𝐸𝑃 A POI(spatial entity) belonging to 𝐸𝑃
𝑅 Set of node relationships in𝐺
𝐴 Set of edge types in𝐺

𝑃𝑆𝑒𝑡 Positive label set
𝑁𝑆𝑒𝑡 Negative label set
ℎ𝑒 Graph embedding of 𝑒 in MRG

𝐺𝑎𝑏𝑠 (ℎ𝑎, ℎ𝑏 ) Differencies between ℎ𝑎 and ℎ𝑏
𝐺𝑑𝑜𝑡 (ℎ𝑎, ℎ𝑏 ) Similarities between ℎ𝑎 and ℎ𝑏
𝐸𝑏 (𝑒𝑖 , 𝑒 𝑗 ) Distance feature between 𝑒𝑖 and 𝑒 𝑗

𝑀 Attribute similarity matrix

quality of workers is low. In recent years, pre-trained large lan-
guage models (LLMs) have been rapidly developed and applied to
the field of entity resolution [8, 12, 14, 16, 18, 19, 37], achieving high
accuracy rates. Peeters et al. [18] proposed a dual-objective training
method called JointBERT for entity matching. DITTO [16] identifies
matched pairs of entities by fine-tuning LLMs, treating the entity
matching task as a sequential pair classification problem. All of the
above methods rely on a large amount of expensive labelled data,
and how to reduce the reliance on labelled data has become a hot
topic of discussion in the current academic community. Zhang et
al. [36] proposed an unsupervised entity parsing graph-theoretic
fusion framework that evaluates the matching probability of two
records based on the TF-IDF and the record graph. Ge et al. proposed
a self-supervised entity matching framework called CollaborEM [8],
which trains the two records through automatic label generation
and collaborative entity matching training for matching entities in
two stages. All of the above works do not fully consider the spatial
characteristics of entities themselves and the spatial neighbour-
hood features between entities, so they cannot be directly applied
to spatial entity resolution tasks.

2.2 Spatial entity resolution
A part of the research focuses solely on spatial objects, which are
entities that possess only spatial attributes. Relevant studies include
road network data matching [22, 27, 31, 32], location point match-
ing [21, 23, 26, 34], polygon area matching [10, 20], etc. Another
part of the research focuses on spatial entities that possess both
spatial and textual attributes. Existing spatial entity resolution work
is mainly based on rule-based [1, 5, 11, 22, 25, 27, 31] and learning-
based approaches [2, 3, 24]. Rule-based methods give matching
decisions through predefined rules and logic. Isaj et al. [11] pro-
posed a heuristic framework for geographic entity matching based
on the idea of Pareto optimality. Although the above methods are
interpretable, they cannot capture phenomena such as multiple
meanings of words (e.g., Fig. 1 𝑒1 and 𝑒4). In recent years, deep
learning have developed rapidly. Balsebre et al. [2] proposed a joint
spatial entity resolution framework based on supervised learning
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Figure 2: MRG-SER framework.

called Geo-ER. Although the accuracy is high, Geo-ER relies on a
large amount of pre-labeled training data, resulting in high labor
costs.

3 MRG-SER
3.1 Problem formulation
Spatial entity resolution aims to find matching tuple pairs between
two relational datasets that refer to the same real-world entity.
Let 𝑆 be a relational dataset containing |𝑆 | tuples and𝑚 attributes
𝐴 = {𝐴[1], 𝐴[2], · · · , 𝐴[𝑚]}. Each tuple 𝑒 ∈ 𝑆 consists of a set of
attribute values, represented as 𝑉 = {𝑒.𝐴[1], 𝑒 .𝐴[2], · · · , 𝑒 .𝐴[𝑚]},
where 𝑒.𝐴[𝑚] is the𝑚-th attribute value of the tuple 𝑒 , correspond-
ing to the attribute 𝐴[𝑚] ∈ 𝐴. The ER task can be represented as
𝑇 = {(𝑒𝐴, 𝑒𝐵) ∈ 𝑆1 × 𝑆2 |𝑒𝐴 ≡ 𝑒𝐵}, where 𝑒𝐴 ∈ 𝑆1, 𝑒𝐵 ∈ 𝑆2, and ≡
denotes the matching relationship between the tuples 𝑒𝐴 and 𝑒𝐵 .
Table 1 summarises the symbols frequently used in this paper.

3.2 Framework overview
3.2.1 Self-supervised learning strategy. MRG-SER takes as input the
spatial relationship datasets 𝑆1 and 𝑆2 and outputs a set of prediction
results in the form of (𝑒𝐴1 , 𝑒

𝐵
2 , 𝑙𝑎𝑏𝑒𝑙). The structure of MRG-SER is

illustrated in Fig. 2. It consists of two main components: Spatial
Entity Automatic Label Generation (SEAG) and Multi-Relational
Graph based Spatial Entity Matching (MRG-SEM). In MRG-SER, we
implement self-supervised learning through the following steps:

(1) Automatic label generation: Initially, SEAG construct
the similarity matrix 𝑀 and generates high-quality sets
of positive labels 𝑃𝑆𝑒𝑡 and negative labels 𝑁𝑆𝑒𝑡 based on
name, text, and spatial similarity between entities.

(2) Spatial entity matching: Next, we construct spatial entity
multi-relational graphs, extract features such as the spatial
neighborhood of entities using the AttrGNN[17] model,
and use MRG-SEM to integrate graph features, sentence
features, and distance features of spatial entities to jointly
predict matching results.

(3) Self-supervised learning: Finally, we use the 𝑃𝑆𝑒𝑡 and
𝑁𝑆𝑒𝑡 generated by SEAG to train AttrGNN and MRG-SEM,
enabling self-supervised learning without manual interven-
tion.

3.2.2 AOI-based spatial entity multi-relational graph construction.
We design a spatial entity multi-relational graph (SEMRG) which
consists of three types of nodes: area of interest nodes (AOIs), point
of interest nodes (POIs) and attribute nodes. AOIs and POIs are con-
nected by a𝑏𝑒𝑙𝑜𝑛𝑔𝑇𝑜 relationship, as shown in Fig. 3. By using AOIs
to establish proximity relationships between spatial entities, we ad-
dress the shortcomings of other methods that cannot be applied to
spatial data. Furthermore, we connect different spatial entities that
share the same attribute value nodes, thereby preserving semantic
relationships between different spatial entities.

SEMRG is represented as𝐺 = {𝐸, 𝑅,𝐴}, where 𝐸 is a set of nodes,
including 𝐸𝐴 , 𝐸𝑃 and 𝐸Attr. The relationship set 𝑅 is used to connect
nodes and mainly contains three types of edges: POI-Attribute
Value, AOI-Attribute Value, and POI-AOI. Each edge is stored in
the form of a triple 𝑅 = {(𝑒, 𝑎, 𝑣) |𝑒, 𝑣 ∈ 𝐸, 𝑎 ∈ 𝐴}. The attribute
set 𝐴 = {𝑛𝑎𝑚𝑒, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑝ℎ𝑜𝑛𝑒, 𝑏𝑒𝑙𝑜𝑛𝑔𝑇𝑜} represents the
types of edges that connect nodes.

3.3 Spatial entity automatic label generation
The structure of Spatial Entity Automatic label Generation (SEAG)
is shown in Fig. 4. First construct the similarity matrix 𝑀 . Input
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Figure 3: Structure of the spatial entity multi-relationship
graph.

a set of spatial entities 𝑆1, 𝑆2 and construct a two-dimensional
matrix𝑀 ∈ [0, 1] |𝑆1 |× |𝑆2 | , where |𝑆1 | and |𝑆2 | denote the number
of entities in the set of spatial entities, respectively. The element
𝑀 [𝑖] [ 𝑗] in the 𝑖th row and 𝑗 th column of the matrix represents the
combined semantic and spatial distance similarity between entities
𝑒𝐴
𝑖
∈ 𝑆1 and 𝑒𝐵𝑗 ∈ 𝑆2. Then, it is computed for each row and column

element in the similarity matrix 𝑀 . In this paper, the attributes
of a spatial entity are categorized into three parts: name, other
textual information, and coordinates. For name and other textual
information, the representation vectors are processed and output
using BERT, and then the cosine similarity function (Cos) is used
to measure the name semantic similarity 𝑆𝑖𝑚𝑁 (𝑒𝐴

𝑖
, 𝑒𝐵
𝑗
) and other

textual semantic similarity 𝑆𝑖𝑚𝐼𝑛𝑓 𝑜 (𝑒𝐴𝑖 , 𝑒
𝐵
𝑗
) of the two elements.

𝑆𝑖𝑚𝑁 (𝑒𝐴𝑖 , 𝑒𝐵𝑗 ) = Cos(𝐵𝐸𝑅𝑇 (𝑒𝐴𝑖 [𝑛𝑎𝑚𝑒 ], 𝑒𝐵𝑗 [𝑛𝑎𝑚𝑒 ] ) ) (1)

𝑆𝑖𝑚𝐼 (𝑒𝐴𝑖 , 𝑒𝐵𝑗 ) = Cos(𝐵𝐸𝑅𝑇 (𝑒𝐴𝑖 [𝑖𝑛𝑓 𝑜 ], 𝑒𝐵𝑗 [𝑖𝑛𝑓 𝑜 ] ) ) (2)

For coordinate information, we calculate Haversine distance us-
ing Eq. 10, which models the Earth as a sphere model and calculates
the latitude and longitude distance between two spatial entities on
the sphere based on the equatorial radius. The Haversine distance
is then regularized to obtain the distance similarity:

𝐷𝑖𝑠𝑡 (𝑒𝐴𝑖 , 𝑒
𝐵
𝑗 ) = 𝑁𝑜𝑟𝑚(𝑑𝑖𝑠 (𝑒𝐴𝑖 , 𝑒

𝐵
𝑗 )) (3)

Based on three key dimensions, we calculate the values of the
combined attribute similarity matrix. The computation process
follows Eq. 4, and the hyperparameters 𝛼 , 𝛽 , and 𝛾 are introduced
to regulate the weights of name, other text, and distance in the final
similarity score.𝑀 [𝑖] [ 𝑗] denotes the combined attribute similarity
between entities 𝑒𝐴

𝑖
and 𝑒𝐵

𝑗
.

𝑀 [𝑖] [ 𝑗] = 𝛼 · 𝑆𝑖𝑚𝑁 (𝑒𝐴𝑖 , 𝑒
𝐵
𝑗 ) + 𝛽 · 𝑆𝑖𝑚𝐼 (𝑒𝐴𝑖 , 𝑒

𝐵
𝑗 )

− 𝛾 · 𝐷𝑖𝑠𝑡 (𝑒𝐴𝑖 , 𝑒
𝐵
𝑗 )

(4)

Finally, the automatic label generation strategy is designed based
on the spatial attribute similarity matrix𝑀 . Sorting the combined
attribute similarity fetches for each row in 𝑀 , the Top-K similar

𝒆𝒆𝟑𝟑𝑨𝑨 𝒆𝒆𝟒𝟒𝑩𝑩
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Figure 4: Spatial entity automatic label generation strategy
example.

most neighboring matrices 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝐴 = [𝑒𝑖 𝑗 ]1≤𝑖≤ |𝑆1 |,1≤ 𝑗≤𝐾 of en-
tities in 𝑆1 within 𝑆2 are similar to the most neighboring matrices
𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝐴 = [𝑒𝑖 𝑗 ]1≤𝑖≤ |𝑆1 |,1≤ 𝑗≤𝐾 , where 𝐾 ∈ Z+, and generating
the 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝐵 = [𝑒𝑖 𝑗 ]1≤𝑖≤ |𝑆2 |,1≤ 𝑗≤𝐾 , as illustrated in Fig.
4 for the case when 𝑘 = 3.

The positive label set 𝑃𝑆𝑒𝑡 and the negative label set 𝑁𝑆𝑒𝑡 are
determined based on the nearest neighbour matrices 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝐴 and
𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝐵 . We use the IKGC algorithm [35] to generate positive
labels. Specifically, under the premise that two entities are deter-
mined to be the most similar entities to each other, it is required
that the difference between the similarity value of the most similar
entity pair and that of the second most similar entity pair in the
Top-K similarity matrix is greater than a predefined threshold 𝑡
before the entity pair is included in the positive sample set 𝑃𝑆𝑒𝑡 .

Based on the set of positive labeled tuple pairs 𝑃𝑆𝑒𝑡 , given a
positive labeled entity pair (𝑒𝑖 , 𝑒 𝑗 ), a set of negative labeled entities
is obtained by using a number of proximity entities that are not the
most similar to each other in 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝐴 and 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝐵 to replace 𝑒𝑖
or 𝑒 𝑗 , respectively, in the positive labeled entity pair.

3.4 MRG-based Spatial Entity Matching
3.4.1 Spatial entity graph feature learning. This section aims to
embed spatial entities from different datasets into the same vector
space, ensuring that the matching entities are similar in the vector
space. For this purpose, we use the advanced entity alignment
model AttrGNN [17] to generate graph embeddings for each spatial
entity, as shown in equations 5 and 6.

𝑜𝑙+1𝑛𝑖
= AGGREGATION

(
{ℎ𝑙𝑛 𝑗

, 𝑟𝑖 𝑗 | ∀𝑛 𝑗 ∈ 𝑁 (𝑛𝑖 ) }
)

(5)

ℎ𝑙+1𝑛𝑖 = UPDATE
(
ℎ𝑙𝑛𝑖 , 𝑜

𝑙+1
𝑛𝑖

)
(6)

where ℎ𝑙+1𝑛𝑖 denotes the embedding vector of the node 𝑛𝑖 at the
𝑙 + 1 level, which is obtained by aggregating the information of
the neighbouring nodes. 𝑁 (𝑛𝑖 ) denotes the set of neighbouring
nodes of node 𝑛𝑖 in the graph. 𝑟𝑖 𝑗 denotes the embedding vector
of the edges connecting 𝑛𝑖 and 𝑛 𝑗 . The process of graph feature
learning usually consists of two steps: firstly, aggregating the in-
formation of the neighbouring nodes of the current node through
the aggregation function (AGGREGATION); and then integrating
the aggregated information to the current node using the update
function (UPDATE). Specifically, aggregating information about
neighbours is implemented using the attention mechanism, while
updating nodes is implemented using mean aggregation.
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Table 2: Experimental Data

City Source (𝑆1 - 𝑆2) |𝑆1 | |𝑆2 | |𝐶 | Number of Matches Positive Label Proportion

Nanjing Dianping - Meituan 12356 828 31437 415 1.32%
Pittsburgh OSM-FSQ 2564 2474 71141 1247 1.75%

The GNN-based approach requires equivalent sets of entity pairs
to train the model, and we use the positive and negative sample
sets 𝑃𝑆𝑒𝑡 and 𝑁𝑆𝑒𝑡 obtained from the automatic label generation
module(Section 3.3) to train the dataset, with the goal of minimizing
the cosine similarity between the vectors corresponding to the two
matching entities, and maximizing the cosine similarity between
the vectors of the two mismatching entities. Therefore, the loss
function is set as follows:

𝐿𝑘 =
∑︁
𝑃𝑆𝑒𝑡

( ∑︁
𝑁𝑆𝑒𝑡

[
cos(e𝑘𝑖 , e

𝑘
𝑗 ) − cos(e𝑘𝑖 , e

′𝑘
𝑗 ) + 𝜂

]
+
+

∑︁
𝑁𝑆𝑒𝑡

[
cos(e𝑘𝑖 , e

𝑘
𝑗 ) − cos(e

′𝑘
𝑖 , e

𝑘
𝑗 ) + 𝜂

]
+

)
(7)

where, (𝑒𝑖 , 𝑒 𝑗 ) ∈ 𝑃𝑆𝑒𝑡 and (𝑒′𝑖 , 𝑒 𝑗 ) ∈ 𝑁𝑆𝑒𝑡 , 𝑃𝑆𝑒𝑡 and𝑁𝑆𝑒𝑡 are the
positive and negative samples obtained from the automatic label
generation module. 𝑘 denotes different GNN channel 𝐺𝐶𝑘 . Cos
denotes the cosine similarity function. 𝜂 denotes a hyperparameter
that increases the model’s ability to discriminate between pairs of
widely differing entities, with a default of 𝜂 = 1.0. The conditional
expression [𝑥]+ = max(𝑥, 0) indicates that the value 𝑥 is taken if 𝑥
is positive, otherwise the expression returns 0.

3.4.2 Spatial entity feature extraction. MRG-based Spatial Entity
Matching (MRG-SEM) predicts the final matching results by using
three features of spatial entities: graph features, sentence features
and distance embedding vectors. Implementation details are given
below.

Graph feature extraction: Suppose that in the multi-relational
graphs 𝐺1 and 𝐺2, the graph embeddings of entities 𝑒1 and 𝑒2 are
ℎ𝑒1 and ℎ𝑒2 , the element-by-element differences 𝐺𝑎𝑏𝑠 (ℎ𝑒1 , ℎ𝑒2 ) and
element-by-element similarities 𝐺𝑑𝑜𝑡 (ℎ𝑒1 , ℎ𝑒2 ) of the two embed-
dings are computed respectively.

𝐺𝑎𝑏𝑠 (ℎ𝑒1 , ℎ𝑒2 ) = |ℎ𝑒1 − ℎ𝑒2 | (8)

𝐺𝑑𝑜𝑡 (ℎ𝑒1 , ℎ𝑒2 ) = ℎ𝑒1 ⊙ ℎ𝑒2 (9)
where 𝐺𝑎𝑏𝑠 (ℎ𝑒1 , ℎ𝑒2 ) denotes the element-by-element difference of
the two graph features, and | · | denotes the absolute value of the
element-by-element difference of the element calculations of ℎ𝑒1
and ℎ𝑒2 in each dimension. 𝐺𝑑𝑜𝑡 (ℎ𝑒1 , ℎ𝑒2 ) denotes the element-by-
element similarity of the features of the two graphs, and ⊙ denotes
the Hadamard product, where each element is the product of the
corresponding elements in 𝑒1 and 𝑒2. The results of 𝐺𝑎𝑏𝑠 (ℎ𝑒1 , ℎ𝑒2 )
and𝐺𝑑𝑜𝑡 (ℎ𝑒1 , ℎ𝑒2 ) are vectors of the same dimension R𝑔 as ℎ𝑒1 and
ℎ𝑒2 .

The graph features capture and compare the similarity of the
two entity vectors in the model, if the value of𝐺𝑎𝑏𝑠 is smaller, their
embedding vectors will be more similar, which in turn suggests
that the two entities may be matched. If𝐺𝑑𝑜𝑡 obtains a larger value,
it means that the two entities have similar embedding features in

multiple dimensions, i.e., the two vectors are consistent in more
than one way, which in turn suggests that the two entities may
have a matching relationship.

Sentence feature extraction: The main idea is to use the Pre-
trained language model to extract the textual attributes of two
entities to form a sentence, for which the classification task is
fine-tuned. In the input phase of the model, this module inputs
entity pairs (𝑒1, 𝑒2) and constructs the entity pairs as sequence
pairs. Each spatial entity 𝑒 contains attributes 𝑒 [𝑎], 𝑎 ∈ 𝐴𝑡𝑡𝑟 , which
divides the set of attributes 𝐴𝑡𝑡𝑟 into a set of textual attributes
𝐴𝑡𝑡𝑟𝑡 = {𝑛𝑎𝑚𝑒, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑐𝑎𝑡𝑒, 𝑝ℎ𝑜𝑛𝑒} and a set of spatial attributes
𝐴𝑡𝑡𝑟𝑠 = {𝑙𝑎𝑡, 𝑙𝑜𝑛}. Individual entities are serialised by adding the
tokens [COL] and [VAL] to the attribute name and attribute value,
where [COL] precedes the attribute name and [VAL] precedes the
attribute value. Construct textual attribute sequences 𝑆𝑒𝑞𝑡 (𝑒1) and
𝑆𝑒𝑞𝑡 (𝑒2) for entities 𝑒1 and 𝑒2, respectively.

Distance embedding vector: We use Haversine formula to
calculate the distance between two spatial entities 𝑒1 and 𝑒2:

𝑑𝑖𝑠 (𝑒1, 𝑒2) = 𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (𝜑1, 𝜑2, 𝜆1, 𝜆2, 𝑟 ) (10)

where (𝜑1, 𝜆1) are the latitude and longitude of entity 𝑒1 and 𝑟 is the
radius of Earth. The spatial distance embedding vector generation
module uses the Eq. 10 to calculate the spatial distance 𝑑𝑖𝑠 (𝑒1, 𝑒2) of
a spatial entity pair (𝑒1, 𝑒2), obtains the maximum spatial distance
𝑚𝑎𝑥𝐷𝑖𝑠𝑡 of the entity pair in the dataset, and based on themaximum
distance, normalises 𝑑𝑖𝑠 (𝑒1, 𝑒2) into a [-1,1] interval of values and
embedded into a vector space of dimension 𝑑𝑑𝑖𝑠𝑡 as shown in Eq.
11.

𝐸𝑏 (𝑒1, 𝑒2) = 𝜃𝑇𝑑𝑖𝑠𝑡 ·
(
2 · 𝑑𝑖𝑠 (𝑒1, 𝑒2)

𝑚𝑎𝑥𝐷𝑖𝑠𝑡
− 1

)
+ 𝜈𝑑𝑖𝑠𝑡 (11)

where 𝜃𝑑𝑖𝑠𝑡 , 𝜈𝑑𝑖𝑠𝑡 ∈ R𝑑𝑑𝑖𝑠𝑡 are the parameters that can be learnt
during the training process of the model, and the parameters are
adjusted by minimising the loss function so as to better embed the
information of the distances between spatial entities.

3.5 Loss function and self-supervised training
In the training process, in addition to the input of a sequence
𝑆𝑒𝑞′𝑡 (𝑒1, 𝑒2) consisting of a set of entities, the positive and neg-
ative labels 𝑦 ∈ {0, 1} generated by Section 3.3 are also input. We
concatenates the above three vectors to form a new multidimen-
sional vector and feed it into a fully connected layer, which outputs
the raw prediction scores of match or mismatch, and finally deter-
mines the categories predicted. We use a variant of cross-entropy
loss as the objective training function, as shown in Eq. 12.

𝐿(𝑦 = 𝑘 | (𝑒1, 𝑒2)) = − log
exp(𝑣𝑘 )∑

𝑗∈{0,1} exp(𝑣 𝑗 )
(12)

𝑣𝑘 =𝑊 (𝐸 [𝐶𝐿𝑆 ] ;𝐸𝑏 ;𝐺𝑎𝑏𝑠 ;𝐺𝑑𝑜𝑡 ) (13)
where ∀𝑘 ∈ {0, 1}, 𝐿 is the loss function; 𝑦 is the true label of the
entity pair (𝑒1, 𝑒2), which is 1 for matched entity pairs and 0 for
unmatched ones; and 𝑣𝑘 is the log odds (logits) computed by the
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Table 3: Overall SER results (The best and second scores are in bold and italic, respectively.)

Models NanJing Pittsburgh
precision recall F1 Score precision recall F1 Score

CollaborEM(TKDE 2021) 0.9604 0.5253 0.6791 0.9053 0.3660 0.5212
GraphER(AAAI 2020) 0.5698 0.5698 0.5698 0.5563 0.6146 0.6865

GTMiner(SIGMOD 2023) 0.9333 0.8077 0.8660 0.8831 0.8281 0.8533
GeoER(WWW 2022) 0.8146 0.9389 0.8723 0.8740 0.8127 0.8437
MRG-SER(Ours) 0.8933 0.9054 0.8993 0.8982 0.8506 0.8738

model, which represents the probability that a tuple pair belongs
to category 𝑘 , with 𝑘 standing for either 0 or 1. 𝑣 is a function of
the sentence feature 𝐸 [𝐶𝐿𝑆 ] , the distance feature 𝐸𝑏 (𝑒1, 𝑒2), graph
features𝐺𝑎𝑏𝑠 (ℎ𝑒1 , ℎ𝑒2 ) and𝐺𝑑𝑜𝑡 (ℎ𝑒1 , ℎ𝑒2 ) are jointly generated, and
𝑊 ∈ R(𝑛+𝑑𝑑𝑖𝑠𝑡+2𝑐 )× |𝑘 | is a trainable weight matrix that maps the
input features to the final logits space, converting the input high-
dimensional features into probabilities of predicted categories. The
use of (; ; ; ) in Eq. 13 denotes the vertical stacking of vectors.

4 EXPERIMENTS
4.1 Dataset and experimental settings
We collect a total of 18,222 spatial entities in Nanjing and Pittsburgh
from four real-world LBSs: Dianping, Meituan, OpenStreetMap
(OSM), and Foursquare (FSQ), and manually label the datasets as
experimental benchmarks, as shown in Table 2. We randomly divide
the dataset into training, validation and test sets with a ratio of 5:2:3
and use the AdamW optimiser. In particular, the Pittsburgh dataset
used in this paper differs from GeoER[2] in terms of numbers and
positive label proportion. The AttrGNN [17] is used for graph fea-
ture extraction. In all experiments, the max sequence length is set
to 256; the learning rate is set to 2𝑒 − 5; the batch size is set to 32;
the epochs is set to 10. In addition, we empirically set the hyper-
parameters 𝛼 , 𝛽 , and 𝛾 to 0.595, 0.105, and 0.3, and experimentally
tuned the parameter 𝑏 to 0.03. All programs are run on an NVIDIA
GeForce RTX 3090.

4.2 Comparison methods
We compare MRG-SER with current state-of-the-art solutions in
the field of (spatial) entity resolution. The results are reported in
terms of the precision, recall, and F1 score on the test set.

• GTMiner[3](SIGMOD 2023) proposes an entity relation-
ship prediction model that predicts three kinds of relation-
ships (same-as, serves, part-of) in spatial entities to con-
struct a knowledge graph oriented to spatial entity relation-
ships. We use the same-as relationship as a comparative
result for entity resolution.

• GeoER[2](WWW 2022) proposes a deep learning frame-
work for spatial entity resolution. The method applies BERT
to extract semantic features of textual attributes and mea-
sures spatial distance features, and combines the graph
attention mechanism to integrate the information of neigh-
boring entities, thus obtaining higher entity resolution re-
sults.

• CollaborEM[8](TKDE 2021) is a self-supervised entity
resolution method for traditional relational data, which

constructs small-scale attribute graphs and jointly identifies
the matching probabilities of candidate entity pairs based
on GCN graph features and text features.

• GraphER[15](AAAI 2020) is a GCN-based implementa-
tion of an entity resolution model. The method constructs
relational data as an entity record graph and uses GCN
to capture and integrate multiple types of relationships to
improve the accuracy of entity matching.

4.3 MRG-SER overall performance
Table 3 summarises the performance of MRG-SER and its competing
methods. The results show that MRG-SER performs best on the
Nanjing and Pittsburgh datasets with F1 scores of 0.8993 and 0.8738
respectively, outperforming the self-supervisedmethods GeoER and
GTMiner. This is attributed to the fact that SEAG generates reliable
labelled data to train the model, and that MRG-SER adequately
takes into account spatial neighbourhoods between entities. And
we observe that CollaborEM and GraphER, which are oriented
towards relational data, treat spatial attributes as ordinary textual
attributes and therefore lose the key feature of identifying whether
two entities match, with F1 scores below 0.7.

Compared to MRG-SER, GTMiner and GeoER perform slightly
less well in the matching task, probably because they are better
suited to different entity resolution scenarios. GeoER’s neighbour-
hood features are more affected by the sparsity of the spatial en-
tity distribution, while the Pittsburgh dataset has a sparser entity
distribution and thus cannot effectively exploit the similarity of
neighbourhood features for matching. GTMiner’s performance in
identifying matching relationships relies in part on inferring other
spatial entity relationships. However, in the NanJing dataset, there
are fewer "serves" and "part-of" relationships between entities,
which may adversely affect the matching performance. The above
results show that MRG-SER outperforms spatial data-oriented su-
pervised learning methods, which demonstrates the effectiveness
of our method in the spatial entity resolution task.

4.4 Analysis of label generating quality
We validate the quality of the labels generated by the SEAG module
through the use of 𝑇𝑃 , 𝐹𝑁 , 𝑇𝑁 , 𝐹𝑃 , 𝑇𝑃𝑅, 𝑇𝑁𝑅. The True Positive
Rate (TPR) represents the proportion of matched entities that are
correctly labeled, denoted as 𝑇𝑃

𝑇𝑃+𝐹𝑁 . The True Negative Rate (TNR)
represents the proportion of mismatched entities that are correctly
labeled, denoted as 𝑇𝑁

𝑇𝑁+𝐹𝑃 .
We first evaluated the quality and quantity of labels generated by

SEAG, as shown in Fig. 5. Where SEAG is our proposed automatic
label generation strategy, and SEAG(-dist) is that the spatial distance
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Figure 5: The effect of similarity threshold 𝑏 on the quality and quantity of automatic label generation.

Table 4: Positive and negative label generation results.

Datasets Models Positive label generated Negative label generated |𝑃𝑆𝑒𝑡 | |𝑁𝑆𝑒𝑡 |
TP FN TPR TN FP TNR

NanJing SEAG (-dist) 54 0 100% 872 1 99.8855% 55 872
SEAG 214 0 100% 3650 18 99.5093% 232 3650

Pittsburgh SEAG (-dist) 600 11 98.1997% 10683 106 99.0175% 706 10694
SEAG 976 2 99.7955% 16132 102 99.3717% 1078 16134

is not considered. The results show that as 𝑏 increases from 0
to 0.03, the 𝑇𝑃𝑅 and 𝑇𝑁𝑅 of both strategies gradually increase;
the number of labels generated by SEAG gradually decreases, but
still meets the training requirements. When 𝑏 = 0.03, the 𝑇𝑁𝑅
of the Nanjing and Pittsburgh datasets reach 99.51% and 99.37%,
and the 𝑇𝑃𝑅 reaches 100% and 99.80%, respectively, proving the
effectiveness of SEAG. Meanwhile, the differences in the histograms
indicate that considering spatial distance helps to improve the
performance of SEAG, e.g. two entities with lower name similarity
due to abbreviation have a higher probability of matching due to
their closer spatial distance. Second, we calculated the effect of label
generation for the Nanjing dataset and the Pittsburgh dataset when
the threshold 𝑏 = 0.03 using the SEAG and SEAG(-dist) methods,
respectively, as shown in Table 4. Among them, the Pittsburgh
dataset performs poorly, which is due to the fact that this dataset
has a large number of missing "address" attributes, which limits the
assessment of semantic similarity by SEAG.

4.5 Ablation study
We performed an ablation study of MRG-SER to evaluate the ef-
fectiveness of the different components. The results are shown Fig.

6, where the labels listed have the following meanings: MRG-SER
(complete framework), w/o Dist Emb (MRG-SER without consid-
ering distance features) and w/o Graph Emb (MRG-SER without
considering graphical features). The results show that the F1 scores
of MRG-SER are significantly higher than those of w/o Dist Emb
and w/o Graph Emb. And w/o Dist Emb has the lowest F1 scores
for both. This is due to the presence of a large number of entities
in the dataset with similar distances but inconsistent textual infor-
mation. On all metrics, w/o Graph Emb performs slightly worse
than MRG-SER, indicating that considering spatial neighbourhood
features helps to improve the accuracy of SER.

5 CONCLUSION
We propose MRG-SER, a framework based on multi-relation graphs
for self-supervised spatial entity resolution, which can efficiently
perform spatial entity resolution tasks with zero-labelled data. Ex-
perimental results show that MRG-SER outperforms existing meth-
ods in terms of accuracy and effectiveness. These results can be
attributed to the high quality of SEAG, the full capture of spatial
neighbourhood relationships between entities, and the sufficient
extraction of entity features. In the future, we plan to design a graph
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Figure 6: Effectiveness of different components in MRG-SER.

feature engineering solution for spatial entity resolution instead of
AttrGNN.
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