
Enhancing Neo4jQuery Efficiency with Seamless Integration of
the GOpt Optimization Framework

Bingqing Lyu
Alibaba Group

bingqing.lbq@alibaba-inc.com

Xiaoli Zhou
Alibaba Group

yihe.zxl@alibaba-inc.com

Longbin Lai
Alibaba Group

longbin.lailb@alibaba-inc.com

Yufan Yang
Alibaba Group

xiaofan.yyf@alibaba-inc.com

Yunkai Lou
Alibaba Group

louyunkai.lyk@alibaba-inc.com

Yongfei Liu
Euler AI

fayer@eulerai.au

ABSTRACT
Graph databases have become increasingly popular for managing
and querying complex interconnected data. Neo4j, a leading graph
database, offers robust capabilities in processing graph queries. De-
spite its proficiency, however, Neo4j’s default query optimizer can
encounter performance bottlenecks due to inherent limitations.
In this paper, we explore the integration of Neo4j with GOpt, a
graph-native query optimization framework, aiming to overcome
the constraints of Neo4j’s default optimizer by harnessing GOpt’s
sophisticated mechanisms, including type inference, extensive op-
timization rules, and high-order statistic considered cost-based op-
timizations, with only slight modifications. Our empirical analysis
reveals that the integrated system powered by GOpt’s optimization
strategies, achieves substantial performance improvements, boost-
ing query execution efficiency by up to 19× compared to Neo4j’s
default optimizer.

VLDBWorkshop Reference Format:
Bingqing Lyu, Xiaoli Zhou, Longbin Lai, Yufan Yang, Yunkai Lou,
and Yongfei Liu. Enhancing Neo4j Query Efficiency with Seamless
Integration of the GOpt Optimization Framework. VLDB 2024 Workshop:
3rd International Workshop on Large-Scale Graph Data Analytics (LSGDA
2024).

1 INTRODUCTION
In the realm of data management, graph databases [2, 4, 6, 11, 19]
have proven to be a crucial instrument for effectively capturing
complex relationships in various domains. In graph databases, graph
pattern matching is a widely-studied problem [7, 8, 17, 21, 22, 29–
31], which aims at identifying all subgraphs in a data graph that
matches the given query pattern. It has been widely used in real
applications, such as social network analysis[14, 18], bioinformatics
[13, 27], and chemistry[16, 32].

As one of the most widely-used graph databases, Neo4j [4] en-
ables complex graph queries through the declarative query language
Cypher and has been widely adopted in both academia and industry
due to its robust query processing capabilities. However, we found

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

ProduceResults@neo4j

v1, v2, v3

Filter@neo4j

NOT e2 = e1

Expand(All)@neo4j

(v2)<-[e1]-(v1)

Expand(All)@neo4j

(v3)<-[e2]-(v2)

NodeByLabelScan@neo4j

v3:Post

ProduceResults@neo4j

v1, v2, v3

Filter@neo4j

v1:Person

Expand(All)@neo4j

(v2)<-[e1:Knows]-(v1)

Filter@neo4j

v3:Post AND v2:Person

DirectedRelationshipTypeScan@neo4j

(v2)-[e2:Likes]->(v3)

(c) Example Query Q2

Likes

(a) Graph Schema

Likes

Knows

PostComment Person
id: Integer

content: String
id: Integer

name: String
id: Integer

content: String

MATCH (v1) -[e1]->(v2) -[e2]->(v3: Post) 
RETURN v1,v2,v3

MATCH (v1:Person) -[e1:Knows]->(v2:Person) -[e2:Likes]->(v3: Post) 
RETURN v1,v2,v3

(e) Q2’s Neo4j Plan(d) Q1’s Neo4j Plan

Forum
id: Integer
title: StringContainerOf

Expanding v2 of Forum type is unnecessary

(b) Example Query Q1

Filter by v2:Person is unnecessary

Filter by v1:Person is unnecessary

Figure 1: A Motivation Example

that Neo4j encounters some certain limitations particularly in the
realm of pattern optimization.

Example 1.1. We show an example in Fig. 1. Given a graph data-
base with the schema shown in Fig. 1(a), we aim to identify a 2-hop
traversal targeting to a Post, as illustrated in Fig. 1(b) and (c). The
optimized execution plans generated by Neo4j for the queries Q1
and Q2 are shown in Fig. 1(d) and (e), respectively. From Q1’s ex-
ecution plan, we observe that Neo4j only applies type constraint
on v3, as specified in the query, while treating the other vertices
and edges as with arbitrary types. For example, Fig. 1(d) shows

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


that Neo4j first scans all Post vertices as v3, and then expands the
(v3)<-[e2]-(v2), which matches all the vertices that target to v3
as v2, and the matched vertices can be either a Person or a Forum.
However, the Forum vertices are not necessary to be expanded. This
is because the query further searches vertices v1 targeting to v2,
while no vertex types targeting to Forum in the schema. Thus, the
Forum vertices that matches v2 can be pruned during the query op-
timization. For Q2, we specified the type constraints for all vertices
and edges to avoid the redundant computations as in Q1. In this
case, we observe that Neo4j always applies filters for the specified
type constraints, while some of them are not necessary. For exam-
ple, Fig. 1(e) shows that Neo4j first scans (v2)-[e2:Likes]->(v3)
and then confirms the types by a filter step on v3 as Post and v2 as
Person. However, according to the graph schema, the type filter on
v2 is not necessary, since after confirming v3 as Post, the v2 must
be a Person as it is the only type that targets to Post in the schema.
Thus the filter on v2 (and v1 similarly) can be pruned during the
query optimization.

Drawbacks in Neo4j and Our Solution The above example high-
lights two principal shortcomings in Neo4j: (1) The lack of type
inference. Neo4j requires users to explicitly define type constraints.
In the absence of such specifications, it defaults to match all types,
thereby incurring unnecessary computational costs due to the im-
plicit type constraints. (2) Inefficient execution plans. The absence
of certain optimization techniques in Neo4j can lead to suboptimal
execution plans. Additionally, the system does not provide mecha-
nisms for users to register custom optimization rules, restricting
opportunities for enhancing the optimization process.

To address the limitations and harness the opportunities for im-
proved performance in Neo4j, this paper explores the integration of
GOpt [24], a state-of-the-art graph-native optimization framework,
into Neo4j. Specifically, GOpt provides sophisticated optimization
techniques, including: (1) GOpt introduces an efficient type in-
ference algorithm that deduces implicit type constraints restrict-
ing by the graph schema in the query pattern, thereby enhancing
query processing. (2)GOpt comes equipped with an extensive set of
heuristic rules, broadening the scope and effectiveness of query op-
timization. Besides, it employs cost-based optimization techniques,
particularly adept at handling pattern matching scenarios involv-
ing arbitrary types. (3) GOpt provides user-friendly interfaces for
seamless integration, allowing users to define their own custom
rules and cost models, thereby improving system adaptability and
allowing for tailored optimization.
Contributions. The main contributions of this paper are summa-
rized as follows:

(1) We introduce an integrated system that seamlessly incorpo-
rates GOpt into Neo4j, enhancing it by replacing the native Neo4j
query optimizer with the sophisticated capabilities of GOpt.

(2) During the integration process, we have made some adapta-
tions to fully harness the optimization capabilities of GOpt within
Neo4j. Firstly, we aligned Neo4j’s schema to match the specifica-
tions of GOpt, which is crucial for the type inference algorithm to
work properly. Secondly, we crafted new optimization rules specifi-
cally tailored for Neo4j. Lastly, we refined the cost model to more

accurately reflect the actual costs of Neo4j’s operator implementa-
tions, thereby enhancing the precision of cost estimations in the
cost-based optimization process.

(3) The empirical results reveal that with the integration of GOpt,
the system exhibits performance improvements over Neo4j with its
default optimizer by up to 19× in query execution time, demonstrat-
ing the impact of integrating GOpt coupled with our specialized
optimizations in boosting the efficiency of graph query processing
within the Neo4j System.

We organize the paper as follows. We first briefly review Neo4j
andGOpt in Section 2. Then we delve into the details of the integra-
tion of GOpt into Neo4j in Section 3. We present the experimental
results in Section 4. Finally, we discuss related works in Section 5
and conclude the paper in Section 6.

2 PRELIMINARIES
In this section, we briefly review Neo4j and GOpt, and discuss the
challenges in the integration of GOpt into Neo4j.

2.1 Neo4j
Neo4j [4] stands as one of the most widely-used graph databases. It
adopts the property graph model [9], where the data is represented
as a typed, directed graph. The graph is composed of vertices that
model entities and edges that represent the relationships connect-
ing these entities. Each vertex and edge is associated with a type
to indicate the category of the entity or relationship. For example,
as shown in Fig. 1(a), vertices might be of types Person, Comment,
or Post, and the edge type such as Likes could illustrate the rela-
tionship from a Person to either a Post or a Comment. The vertices
and edges can have properties, which are key-value pairs.

To facilitate interaction with the graph data, Neo4j supports the
Cypher query language [15]. Cypher is known for its declarative
style, enabling users to perform complex graph queries in a con-
cise and intuitive way. As an example, Figure Fig. 1(b) presents
a Cypher query performing a 2-hop traversal that concludes at a
vertex constrained to the type Post.

However, Neo4j encounters certain limitations particularly in
the realm of pattern optimization. First, Neo4j lacks type inference
capabilities and operates strictly according to the user-specified
type constraints. Without these constraints, Neo4j will scan the
entire graph, even if only a small portion of them are valid can-
didates against the underlying graph schema. This will not only
lead to a substantial misestimate of the cost for the pattern in the
optimization stage, but also takes unnecessary overhead computa-
tions in execution. Secondly, it may miss optimization opportunities
due to a restricted set of optimization rules and the lack of user
interfaces to define custom rules, which hinders users from extend-
ing Neo4j’s optimization capabilities to meet specific optimization
requirements. Thirdly, it optimizes patterns relying on low-order
statistics, i.e., the number of vertices and edges of each type, and
estimate the frequency of patterns based on the assumption that
edges exist independently of one another. This assumption falls
short when applied to real-world graphs, which can lead to inaccu-
rate cost estimations and inefficient query execution plans. These
challenges emphasize the need for enhancements in Neo4j’s pattern
optimization to increase the overall performance of the system.

2



2.2 GOpt
GOpt [24] is a graph-native query optimization framework de-
signed to optimize complex graph queries. It is built on top of the
property graph model and is compatible with various graph query
languages. Specifically, GOpt defines a unified intermediate repre-
sentation (IR) that includes both graph and relational operations,
which, not only provides a common ground for the support of
different query languages such as Cypher [15] and Gremlin [28],
but also streamlines the application of optimization techniques.
Based on this unified IR, GOpt proposes three key optimization
techniques to improve the query performance. Firstly, GOpt of-
fers the capability of automatic type inference. The basic idea is to
infer the type constraints for the vertices and edges in the query
pattern, based on the graph schema and the explicitly specified
type constraints. If during the process, no valid type constraints
can be further assigned, the type checker will return an INVALID
flag. Secondly, GOpt incorporates a wide-ranging suite of opti-
mization rules that explore the optimization possibilities among
graph operators, relational operators, and between the two. For
instance, it includes FilterIntoMatchRule for pushing down filters,
FieldTrimRule for removing redundant intermediate results, and
ExpandGetVFusionRule to fuse edge expansion and vertex retrieval
operators together. Thirdly, GOpt utilizes sophisticated high-order
statistics that capture the frequency of small patterns in the data
graph for more precise cardinality estimation. In addition, it consid-
ers UnionTypes, the type constraints representing a set of possible
types such as {Person|Forum}, through refined cost estimation
methods. These capabilities contribute to more accurate cost esti-
mations and, consequently, the generation of more efficient query
execution plans.

In addition to the optimization techniques, GOpt also provides
user-friendly interfaces for seamless integration. Firstly, it offers
multiple layers of integration, including support for both Gremlin
SDK and Cypher SDK, among others, for end-users to interact
with the system. Furthermore, it provides IR Builder SDK which is
query language independent, enabling the construction of the IR-
based plan for the further application of GOpt’s core optimization
techniques. Secondly, it provides extensible rule-based optimization
(RBO) and cost-based optimization (CBO) modules. Specifically, the
RBOmodule enables users to introduce their own custom rules, thus
enhancing the system’s adaptability. The CBO module permits the
registration of user-defined cost models. This capability is crucial
for distinguishing the costs of physical operators implemented in
the systems, enabling more accurate cost estimation.
Challenges. The integration of GOpt can bring significant benefits
to Neo4j, but it also faces some challenges. Firstly, the schema-free
nature of Neo4j permits users to load data and perform queries with-
out the prerequisite of a defined schema. While this adds flexibility,
it constrains the viability of applyingGOpt’s type inference feature,
which relies on a well-defined graph schema. Secondly, despite both
GOpt and Neo4j adhering to the property graph model, there are
nuanced variances in their implementations. Neo4j represents edge
types with a single identifier, such as Likes which may target to
multiple vertex types, whereas GOpt employs a triplet format to
specify edge types, such as Person-Likes->Comment. Bridging this
structural disparity is vital for successful integration. Thirdly, there

Metadata
Provider

Neo4j Execution Plan

Relational
Description

Pattern
Description

Neo4j Parser

Type Checker

Optimizer

RBO CBO

Cypher Query

High-order
Statistics

Adapted
GLogue:

Adapted
Schema

GOpt-IR Builder

GOpt Framework

Plan Converter

Neo4j Interpreted Runtime

Optimized Plan

Figure 2: System Architecture of Integration of GOpt with
Neo4j.

are inherent dissimilarities between the operator implementations
of Neo4j and those assumed in GOpt. These variation in imple-
mentations can lead to divergent cost estimations, which must be
accounted for during the integration process. Lastly, it is essential
to ensure that the physical plan optimized by GOpt is appropriately
translated into an executable plan that is compatible with Neo4j’s
execution engine.

3 GOPT ON NEO4J
In this section, we delve into the integration of GOpt with Neo4j,
and outline the strategic modifications and extensions applied.

3.1 System Overview
Fig. 2 illustrates the system architecture of the integrated system.
The architecture holistically encompasses the initial parsing of
queries using the native Neo4j Cypher parser, followed by the
advanced optimization phase managed by GOpt framework, and
ultimately, the execution facilitated by Neo4j’s native interpreted
runtime engine. Specifically, the query processing pipeline consists
of four key steps:

(1) Query Parsing and Transformation. The query is first parsed
by Neo4j’s Cypher parser to generate the query AST, which is then
transformed into GOpt’s intermediate representation (IR) using the
IR Builder SDK provided by GOpt.

(2) Type Inference. The IR-based logical plan then undergoes a
type inference step whereGOpt’s native type checker infers precise
type constraints for the query pattern. This step works with the
adapted schema in Neo4j.

3



(3) Query Optimization. With the inferred type constraints, the
logical plan is passed through GOpt’s optimizer. This phase lever-
ages both rule-based and cost-based optimization methods to refine
the query plan.

(4) Plan Conversion and Execution. Finally, the optimized plan
is converted into a format compatible with Neo4j’s execution plan,
and the converted plan is executed in Neo4j’s native interpreted
runtime based engine.

The subsequent sections will delve into a detailed discussion of
each step in the query processing pipeline.

3.2 Query Parsing and Transformation
To ensure seamless integration with Neo4j’s established support for
the Cypher query language, we opt to use the IR Builder SDK pro-
vided by the GOpt framework instead of interfacing directly with
the Cypher SDK within GOpt. By doing so, we leverage Neo4j’s
own parser to deconstruct the Cypher query into an abstract syntax
tree (AST) and then employs the IR Builder SDK to systematically
construct the intermediate representation (IR)-based plan that ad-
heres to GOpt’s specifications.

Specifically, by utilizing the IR Builder SDK, we can build an IR-
based logical plan that includes graph operators, such as SCAN for
scanning vertices or edges, EXPAND_EDGE and EXPAND_PATH to find
connected edges or paths, GET_VERTEX to retrieve endpoint vertices,
and MATCH_PATTERN as a composed operator to match complex pat-
terns. It also includes relational operators, such as PROJECT for
data projection and SELECT for filtering. Through these opera-
tors, the system is able to bridge the expressiveness of the Cypher
query language with the powerful optimization capabilities of the
GOpt framework, fulfilling both the relational-semantic and graph-
semantic requirements of complex query processing.

3.3 Type Inference
Upon constructing the IR-based logical plan, we proceed with the
type inference step, where GOpt’s type checker will deduce the
most appropriate type constraints for the query pattern. This pro-
cess, however, encounters certain challenges: First, in Neo4j, the
schema is not strictly enforced, while the type inference algorithm
requires a complete schema. Secondly, Neo4j represents the edge
type as a single identifier such as Knows and Likes, which may
not be sufficient for the type inference algorithm. To overcome
these hurdles, we make specific schema adaptations in Neo4j to
provide more detailed information. Firstly, we employ the APOC
procedures [1] provided by Neo4j to extract the graph schema infor-
mation. Notice that we adopt the extraction method that guarantee
the completeness of the schema, thereby ensuring the correctness
of the type inference algorithm. Secondly, we adapt the schema in
Neo4j to provide more detailed information about the edge type,
which is modeled as a triplet of the source vertex type, the edge
type, and the destination vertex type. Specifically, if the edge type
starts from (or targeting to) multiple vertex types, we define a
union of the vertex types as the source (or destination) type in the
edge type. For example, the edge type Knows in Fig. 1(a) is defined
as Person-Knows-Person, and the edge type Likes is defined as
Person-Likes->Comment|Post, with "->" symbolizing the edge

direction, and "|" denoting the union of types indicating that any
of them is valid.

This adapted schema then allows the type inference algorithm
to operate effectively. For example, consider query Q1 in Fig. 1(b).
GOpt’s type checker will initiate the process with Post v3. It in-
fers that v2’s type constraint could be Person|Forum, based on
Forum-ContainerOf->Post and Person-Likes->Comment|Post
in the adapted schema. The type checker then moves on to eval-
uate the neighbors of v2. When it comes to v1, which is an in-
neighbor of v2, and knowing that Person|Forum’s in-neighbors
in the graph schema are exclusively of type Person via edge type
Person-Knows-Person, the type checker infers that v1 must be a
Person. This inference further refines the constraint for v2, solidi-
fying it as a Person.

3.4 Query Optimization
With the inferred type constraints, the logical plan is then passed
through GOpt’s optimizer to refine the query plan. The optimiza-
tion process is divided into two main phases: rule-based optimiza-
tion (RBO) and cost-based optimization (CBO).

3.4.1 Rule-Based Optimization. GOpt comes equipped with a com-
prehensive suite of optimization rules that considers both graph
and relational operators, as well as the interactions between the
two. For example, the FilterIntoMatchRule aims to push filters into
the graph operators as early as possible. The early application of fil-
ters serves to minimize the volume of intermediate results, thereby
improving the overall query performance.

Nevertheless, we have identified opportunities for additional
optimizations in the integration, especially in how type constraints
are handled within queries. By default, Neo4j’s native planner ap-
plies type filters whenever they are specified, but some filters are
unnecessary and can slow down query execution.

Considering the graph schema in Fig. 1(a) and a simple query
(v1:Person)-[e1:KNOWS]-(v2:Person), Neo4j starts searching
from a Person v1, going through the Knows relationship to v2, and
imposes a filter to ensure v2 is a Person, yet this is redundant
sincev2 would inherently be a Person due to the schema. However,
blindly removing all type filters is not ideal. Consider the pattern
(v3:Person)-[e2:LIKES]-(v4:Comment). Here, when expanding
v4 from v3, filtering is essential because v4 could represent either a
Comment or a Post based on the schema. This optimization consid-
eration lies in Neo4j’s original schema design, which allows a single
relationship type to connect either a single vertex type or a union of
vertex types. To accommodate this, we design a new optimization
rule to remove the unnecessary type filters while guaranteeing the
correctness of the query.
TypeFilterRemovalRule. In the query pattern, when dealing with
an edge expansion from source vertex s to target vertex t , the type
filter on t can be safely disregarded if the possible types of t as
defined in the schema (which could be a union of different types)
are enclosed within the inferred types for t .

For example, consider query Q2 in Fig. 1(c), where we start look-
ing from vertex v1 through edge e1 to v2, then through edge e2
to v3. v2 is inferred to be a Person and the schema confirms this,
thus we remove the type filter on v2. Conversely, while further
expanding e2, the target type ofv3 in schema is Comment|Post, and

4



the inferred type for v3 is solely Comment, thus we must keep the
type filter. Here, as we consider both user-given type constraints
and graph schema in the type checker, the inferred types are exact
what users give in this example. Note that TypeFilterRemovalRule
take the expanding direction into consideration. For instance, if
we traverse edge e2 from v3 to v2, the destination type is Person
based on the Person-Likes->Post|Comment edge in schema in
the in-direction, which matches the inferred type for v2, and thus
the filter on v2 can be removed.

We develop this new rule by implementing the interfaces defined
in GOpt’s RBO module, which requires to (1) define the condition
for applying the rule and (2) specify the transformation to be ap-
plied. Then we register the rule in the RBO module, which will be
automatically applied during the optimization process.

3.4.2 Cost-Based Optimization. In the integration, we leverage the
advanced cost-based optimization techniques in GOpt with minor
modifications to fit the Neo4j’s execution engine, including the
high-order statistics and cost model.
High-Order Statistics. Unlike the default Neo4j planner that uses
low-order statistics for its optimizations, GOpt employs higher-
order statistics to achievemore accurate cardinality estimates. Specif-
ically, GOpt enumerates small patterns (a.k.a. motifs) up to a cer-
tain size based on the graph schema, and precomputed their oc-
currences to serve as the higher-order statistics. However, as the
schema in Neo4j is adapted to include the union of vertex types
in edge types, the motif enumeration process needs to be adjusted
to accommodate this schema. For example, when dealing with
edge type like Person-Likes->Comment|Post, we enumerate and
count not just the patterns contains Person-Likes->Comment and
Person-Likes->Post, but also the Person-Likes->Comment|Post
edge. This enables the integrated system to directly retrieve sta-
tistics for queries involving such type constraints, such as Match
(v1)-[e1:LIKES]-(v2), making the cost estimation more precise.
Cost Model.We also accommodate the cost model in GOpt with
modifications to align with Neo4j’s execution engine. GOpt adopts
a generic cost model that calculates query plan costs by accounting
for both communication cost, based on the number of intermediate
results, and computation cost, defined as the summarized cost of the
operators in the physical planwith a normalized factorαop to reflect
the weight of each operator to differentiate processing expenses.
However, since Neo4j’s operator implementations may differ from
those assumed by GOpt’s cost model, we tailor the normalized fac-
tors αop to better match Neo4j’s actual performance. For instance,
to search a triangle pattern (v1)->(v2)->(v3)->(v1), GOpt may
generate a candidate physical plan with EXPAND_EDGE(v1,v2), indi-
cating the expansion from v1 to v2, and then a VertexExpandOpr ,
which consists of a EXPAND_EDGE(v2,v3) and a EXPAND_EDGE(v3,v1),
which, executes with a worst-case optimal join [8] by intersect the
results of the two expansions, as assumed in the original GOpt cost
model. However, Neo4j does not support the worst-case optimal
join implementation. Instead, It executes the VertexExpandOpr by
first expanding edges from v2 to v3, and then checking if the there
exists an edge from v3 to v1 by an EXPAND_INTO operation. Rec-
ognizing that EXPAND_INTO is less efficient than the worst-case
optimal join with micro benchmarks, GOpt adjusts the αop value
in the cost model to reflect this difference. By updating the cost

model, GOpt ensures that the optimal plan generated by the CBO
module accurately reflects Neo4j’s performance characteristics, to
produce more efficient execution plans.

3.5 Plan Conversion and Execution
We use Neo4j’s interpreted runtime as the backend execution en-
gine due to its flexibility and ease of integration. After the op-
timization strategies are applied, GOpt translates the optimized
physical plan into a form recognizable by Neo4j’s execution engine.
In many cases, there is a one-to-one mapping where operators like
PROJECT and SELECT in GOpt correspond to Project and Filter
in Neo4j, respectively. For more complex operators, such as Vertex-
ExpandOpr, a sequence of Expand operations are generated, and
when it forms a cyclic pattern, the last Expand would be replaced
by an EXPAND_INTO. Once the conversion is complete, the resul-
tant execution plan can be run on Neo4j’s engine, leveraging the
optimizations made by GOpt to enhance the query performance.

4 EXPERIMENTS
We conducted a series of experiments to compare the performance
the integrated system that substitutes Neo4j’s native optimizer with
GOpt, against Neo4j with its native optimizer. As constrained by
the open-source version of Neo4j, which only supports standalone
deployment, our experiments were conducted on a single machine.

4.1 Experiment Settings
Hardware.Our experiments are conducted on a machine equipped
with dual 8-core Intel Xeon E5-2620 v4 CPUs (each featuring 8 cores
and a 2.1GHz clock speed), 512GB of memory, and a 1TB disk. We
utilize the native Neo4j graph database for data storage, ensuring
all data is loaded into memory to eliminate extra I/O overhead. The
number of threads used corresponds to the number of available
cores, adhering to the default Neo4j configuration.
Datasets.We employ LDBC Social Network Benchmark (SNB) [23]
dataset as our primary data source. The LDBC SNB dataset is a
synthetic dataset that simulates a social network comprising various
entities and relationships. The dataset is generated using the official
LDBC SNB Data Generator.In the experiments, we use the default
scale factor of 1, resulting in a dataset with 3 million nodes and
17 million relationships, encompassing 8 types of nodes and 15
types of relationships, to allow Neo4j processing all queries in a
reasonable time.
Queries.We design three distinct groups of queries labeled as “Qt .”,
“Qr .”, and “Qc .”, and introduced a pattern matching query set called
the Labelled Subgraph Query Benchmark (LSQB) [3], labeled as
“Qls .”. The details are as follows:

(1) Qt [1, . . . , 5]: This group aims to verify the type inference
capability of GOpt. Accurate type inference is a critical feature of
GOpt’s core design, enabling the generation of more precise logical
plans and significantly reduce the intermediate data amount during
query execution.

(2) Qr [1, . . . , 4]: GOpt incorporates a set of heuristic rules in
to optimize the query, such as FilterIntoMatchRule, which pushes
down filters into the match clause, and the TypeFilterRemovalRule,
which trims unnecessary label filtering when fetching adjacent

5



vertices from edge data. Qr [1] and Qr [2] test the effectiveness of
FilterIntoMatchRule, while Qr [3] and Qr [4] test the effectiveness
of TypeFilterRemovalRule.

(3) Qc [1, . . . , 4(a |b)]: This group emphasizes the optimization
effect of GOpt on complex patterns. We design four commonly
used graph patterns: triangles (Qc [1a] andQc [1b]), squares (Qc [2a]
andQc [2b]), 5-paths (Qc [3a] andQc [3b]), and 4-cliques (Qc [4a] and
Qc [4b]). The “a” and “b” variants denote the exclusion and inclusion
of union types, respectively, further validating the optimization
across varying type constraints.

(4) Qls [1, . . . , 6]: For a comprehensive evaluation, we further
introduce a set of standard LSQB queries, adhering to the LDBC
schema standard but focusing on simulating complex query pat-
terns in real-world scenarios. We select 6 out of the original 9
query sets (Qls [1, ..., 6]), omitting Qls [7, 8, 9] due to their reliance
on optional/anti-edges, which are not the primary focus.

The queries are in Cypher and can be found in [5].

4.2 Experiment Results
In this section, we evaluate the performance of GOpt on Neo4j,
focusing on type inference, rule-based optimization (RBO), and
cost-based optimization (CBO). We integrated GOpt into Neo4j and
added configuration options to the original Neo4j configuration file.
These options fall into two main categories:

(1) Optimization Control: These settings control whether the
optimization rules in GOpt are enabled, allowing us to assess the
performance improvements brought by each optimization rule in
GOpt.

(2) Optimizer Switching: These settings allow us to switch be-
tween GOpt and Neo4j’s native optimizer. This enables a direct
comparison of execution plans and performance metrics between
the two optimizers, testing the improvements achieved by GOpt.
Type Inference.We conducted experiments to evaluate the impact
of type inference optimization on query performance by enabling
and disabling this feature. The results, shown in Fig. 3(a), illustrate
that Type Inference significantly reduces latency for most queries,
with an average decrease of 5×. Notably, query Qt [4] shows partic-
ularly significant improvement, with latency reduced by 17×. This
query involves the most complex pattern among all queries, form-
ing a triangle. Type Inference optimization has a more pronounced
impact on complex queries due to several factors: the computation
of complex patterns requires operators with higher complexity,
which are more inclined to be influenced by the volume of data. In
Neo4j, for cyclic patterns, operators like ExpandInto/Join are cru-
cial, and their performance degrades significantly with increased
intermediate data volume. Type inference optimization effectively
mitigates this issue by eliminating unnecessary intermediate data,
thereby enhancing overall query performance. Please note that
performance improvements may vary based on specific queries
with the optimization enabled or disabled, as different query pat-
terns have varying complexities and involve differing numbers of
intermediate results. Similar situations may occur in the following
experiments.
Heuristic Rules. We assessed the effectiveness of two heuristic
rules in GOpt: FilterIntoMatchRule and TypeFilterRemovalRule.

We primarily evaluated the impact of these rules on query per-
formance by enabling and disabling them. The results, presented
in Fig. 3(b), illustrate that these rules significantly enhance query
performance. Qr [1] and Qr [2] show the most substantial improve-
ments, with latency reduced by 33× on average. This improvement
can be attributed to the intuitive and impactful optimization effects
of FilterIntoMatchRule, which operates in two main aspects: (1)
It optimizes by pushing conditions down into the Match clause,
thereby reducing intermediate data generated by Match. (2) Within
the Match clause, RBO prioritizes starting from nodes with condi-
tions, minimizing unnecessary graph traversal in the pattern.Qr [3]
and Qr [4] demonstrate the optimization effects of TypeFilterRe-
movalRule, reducing latency by nearly 2×. TypeFilterRemovalRule
optimizes edge data retrieval by avoiding redundant label filtering
when the source node and edge uniquely determine the target label
type, thereby reducing unnecessary computational overhead.
Cost-based Optimization. In this section, we compare the perfor-
mance improvements of GOpt against the Neo4j native optimizer
on various queries. We use two different query sets: Qc and Qls .
Fig. 3(c) and Fig. 3(d) illustrate the performance results for these
two sets, respectively. It is evident that GOpt significantly outper-
forms the Neo4j’s native optimizer, with an average performance
improvement of 19× on Qc and 16× on Qls . Notably, for queries
Qc [2b], Qc [4a], and Qls [3], the plan generated by Neo4j’s native
optimizer runs out of memory (OOM) due to excessive intermediate
data generation. This performance gain can be attributed to three
key factors:

(1) Type Inference Optimization: GOpt’s Type Inference accu-
rately infers type information within patterns, leading to more
precise cardinality estimations and better execution plans. With-
out accurate type information, Neo4j’s native optimizer defaults
to Rule-Based Optimization (RBO), which tends to prioritize nodes
or edges with explicit type constraints. This order may result in
excessive intermediate data generation, negatively impacting query
performance. For instance, in queryQc [2a], where the Person type
is missing, the Neo4j native optimizer prefers starting from other
node types, producing 9× more data than the optimal execution
order and resulting in a 12× increase in latency. However, in some
cases, Neo4j’s RBO optimizer coincidentally finds an execution or-
der close to the optimal one. This happens when starting from nodes
with explicit type constraints aligns with the optimal execution
order. Even in such cases, GOpt achieves an average improvement
of 1.5× (e.g., Qc [4b], Qls [4], Qls [5], Qls [6]), due to the following
two factors;

(2) Fine-grained Cost Estimation: Drawing from traditional re-
lational optimization frameworks, GOpt implements specific cost
estimation methods for each physical execution operator. For cer-
tain graph traversal operators (e.g., source, expand), it considers
the impact of the graph database interface on cost estimation. This
fine-grained approach allowsGOpt to more accurately reflect actual
physical execution, thus improving the accuracy of query optimiza-
tion.

(3) Hybrid Join Strategies: GOpt supports hybrid join strate-
gies, optimizing for complex graph patterns. For example, in query
Qls [3], which consists of 7 nodes and 9 edges, forming multiple

6



Q t[1
]

Q t[2
]

Q t[3
]

Q t[4
]

Q t[5
]

10 1

100

101

Ru
nt

im
e 

(s
)

With Opt Without Opt

(a) Type Inference

Q r[1
]

Q r[2
]

Q r[3
]

Q r[4
]

10 1

100

Ru
nt

im
e 

(s
)

With Opt Without Opt

(b) Heuristic Rules

Q c
[1

a]
Q c

[1
b]

Q c
[2

a]
Q c

[2
b]

Q c
[3

a]
Q c

[3
b]

Q c
[4

a]
Q c

[4
b]

101

102

Ru
nt

im
e 

(s
)

GOpt Neo4j

(c) CBO

Q ls
[1

]
Q ls

[2
]

Q ls
[3

]
Q ls

[4
]

Q ls
[5

]
Q ls

[6
]

101

102

Ru
nt

im
e 

(s
)

GOpt Neo4j

(d) LSQB Queries

Figure 3: Experimental Results.

cyclic structures in the pattern, GOpt can produce an optimal exe-
cution plan consists of VertexExpandOpr (which in the integration
would be translated to Neo4j’s ExpandInto operator), and signifi-
cantly enhancing query performance. In contrast, Neo4j’s native
optimizer uses a traditional relational approach, converting the
pattern into multiple join operations. As join nesting increases,
the intermediate data volume grows, eventually leading to OOM
errors.

5 RELATEDWORKS
Graph Query Optimization. Graph pattern matching, a key task
in graph database queries, has been extensively studied with the
goal of optimizing this process. The traditional standard for this task
is subgraph isomorphism, a concept rooted in Ullmann’s algorithm
introduced in [30]. This algorithm inspired many other improve-
ments, such as methods for indexing [29], breaking symmetries to
speed up the search [17], and compressing graph structures [12].
In distributed systems, researchers have shifted from backtracking
approaches to join-based algorithms, which are better suited for
parallel processing. These newer algorithms focus on predicting
the cost of different join orders to match patterns effectively, using
either binary-join methods informed by random modeling [20, 21],
or by employing worst-case-optimal joins that keep the cost within
a theoretical upper limit [8, 26]. However, no single method has
consistently proved to be the best, leading to the development of hy-
brid algorithms that combine binary and worst-case-optimal joins,
choosing the most cost-effective option for each scenario [7, 25, 31].
To further enhance the calculation of costs, some researchers recom-
mend using detailed pattern frequency data to inform the planning
of graph pattern queries [22, 25]. Yet, while these research advance-
ments have improved graph pattern matching, they still don’t fully
accommodate the practical query needs that often include complex
relational operations alongside graph pattern matching.
Graph Databases. Graph databases and systems have garnered
significant attention in recent years as they provide flexible, efficient
ways to store and query complex data that naturally maps onto a
graph structure. Neo4j[4] is one of the most popular open-source
NoSQL graph database systems. It employs native graph storage
and processing capabilities, and provide a powerful query language
called Cypher[15] for querying graph data. TigerGraph[6] is a dis-
tributed graph database that supports the GSQL query language.

It is designed to handle large-scale graph data and complex graph
queries. TinkerPop[10] is a traversal-based graph computing frame-
work that provides the Gremlin query language[28]. JanusGraph[2]
is a distributed graph database that supports the Gremlin query lan-
guage. Despite their advancements, these systems have limitations
in optimizing graph queries, particularly in the context of graph
pattern matching, which is the focus of our work.

6 CONCLUSION
In this paper, we explore the integration of Neo4j with GOpt, a
graph-native query optimization framework, to enhance the perfor-
mance of graph query processing in Neo4j. By embedding GOpt,
Neo4j enables the application of sophisticated optimization tech-
niques, such as automatic type inference, a comprehensive set of
heuristic rules, and improved cost estimation models, with minimal
adjustments to the existing infrastructure. As evidenced by the ex-
periments, GOpt delivers substantial performance enhancements,
improving the query execution time by up to 19× compared to
Neo4j’s default optimizer.

7



REFERENCES
[1] 2024. https://neo4j.com/labs/apoc/4.4/overview/apoc.meta/.
[2] 2024. JanusGraph: A Transactional Graph Database. https://janusgraph.org/
[3] 2024. Labelled Subgraph Query Benchmark. https://github.com/ldbc/lsqb.
[4] 2024. Neo4j Graph Database. https://neo4j.com/.
[5] 2024. Queries used for the experiments. https://github.com/alibaba/

GraphScope/tree/main/interactive_engine/benchmark/queries/cypher_queries/
experiments/neo4j

[6] 2024. TigerGraph: Graph Analytics Platform. https://www.tigergraph.com/
[7] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun,

and Christopher Ré. 2017. Emptyheaded: A relational engine for graph processing.
ACM Transactions on Database Systems (TODS) 42, 4 (2017), 1–44.

[8] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. 2018.
Distributed Evaluation of Subgraph Queries Using Worst-Case Optimal Low-
Memory Dataflows. Proc. VLDB Endow. 11, 6 (oct 2018), 691–704. https://doi.
org/10.14778/3184470.3184473

[9] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and Do-
magoj Vrgoč. 2017. Foundations of modern query languages for graph databases.
ACM Computing Surveys (CSUR) 50, 5 (2017), 1–40.

[10] Apache TinkerPop. 2024. http://tinkerpop.apache.org/.
[11] AWS Neptune. 2024. https://aws.amazon.com/neptune/.
[12] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient

subgraph matching by postponing cartesian products. In Proceedings of the 2016
International Conference on Management of Data. 1199–1214.

[13] Mario Cannataro, Pietro Hiram Guzzi, and Pierangelo Veltri. 2010. Protein-to-
protein interactions: Technologies, databases, and algorithms. ACM Comput.
Surv. 43, 1 (2010), 1:1–1:36. https://doi.org/10.1145/1824795.1824796

[14] Gary William Flake, Steve Lawrence, C Lee Giles, and Frans M Coetzee. 2002.
Self-organization and identification of web communities. Computer 35, 3 (2002),
66–70.

[15] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.
In Proceedings of the 2018 International Conference on Management of Data. 1433–
1445.

[16] Benoit Gaüzère, Luc Brun, and Didier Villemin. 2015. Graph kernels in chemoin-
formatics. In Quantitative Graph TheoryMathematical Foundations and Appli-
cations, Matthias Dehmer and Frank Emmert-Streib (Eds.). CRC Press, 425–470.
https://hal.archives-ouvertes.fr/hal-01201933

[17] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: Towards Ul-
trafast and Robust Subgraph Isomorphism Search in Large Graph Databases. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data (New York, New York, USA) (SIGMOD ’13). Association for Computing Ma-
chinery, New York, NY, USA, 337–348. https://doi.org/10.1145/2463676.2465300

[18] Yanqing Hu, Shenggong Ji, Yuliang Jin, Ling Feng, H. Eugene Stanley, and Shlomo
Havlin. 2018. Local structure can identify and quantify influential global spread-
ers in large scale social networks. Proceedings of the National Academy of
Sciences 115, 29 (2018), 7468–7472. https://doi.org/10.1073/pnas.1710547115
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1710547115

[19] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedhbi, Jeremy Chen, and
Semih Salihoglu. 2017. Graphflow: An Active Graph Database. In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao
Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1695–1698. https:
//doi.org/10.1145/3035918.3056445

[20] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. 2015. Scalable subgraph
enumeration in mapreduce. Proceedings of the VLDB Endowment 8, 10 (2015),
974–985.

[21] Longbin Lai, Zhu Qing, Zhengyi Yang, Xin Jin, Zhengmin Lai, Ran Wang,
Kongzhang Hao, Xuemin Lin, Lu Qin, Wenjie Zhang, et al. 2019. Distributed
subgraph matching on timely dataflow. Proceedings of the VLDB Endowment 12,
10 (2019), 1099–1112.

[22] Longbin Lai, Yufan Yang, Zhibin Wang, Yuxuan Liu, Haotian Ma, Sijie Shen,
Bingqing Lyu, Xiaoli Zhou, Wenyuan Yu, Zhengping Qian, Chen Tian, Sheng
Zhong, Yeh-Ching Chung, and Jingren Zhou. 2023. GLogS: Interactive Graph
Pattern Matching Query At Large Scale. In 2023 USENIX Annual Technical Con-
ference (USENIX ATC 23). USENIX Association, Boston, MA, 53–69. https:
//www.usenix.org/conference/atc23/presentation/lai

[23] LDBC Social Network Benchmark. 2022. https://ldbcouncil.org/benchmarks/snb/.
[Online; accessed 20-October-2022].

[24] Bingqing Lyu, Xiaoli Zhou, Longbin Lai, Yufan Yang, Yunkai Lou, Wenyuan
Yu, and Jingren Zhou. 2024. A Graph-Native Query Optimization Framework.
arXiv:2401.17786

[25] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing subgraph queries by
combining binary and worst-case optimal joins. arXiv preprint arXiv:1903.02076
(2019).

[26] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal
join algorithms. Journal of the ACM (JACM) 65, 3 (2018), 1–40.

[27] N Pržulj, Derek G Corneil, and Igor Jurisica. 2006. Efficient estimation of graphlet
frequency distributions in protein–protein interaction networks. Bioinformatics
22, 8 (2006), 974–980.

[28] Marko A. Rodriguez. 2015. The Gremlin Graph Traversal Machine and Language
(Invited Talk). In Proceedings of the 15th Symposium on Database Programming
Languages (Pittsburgh, PA, USA) (DBPL 2015). Association for Computing Ma-
chinery, New York, NY, USA, 1–10. https://doi.org/10.1145/2815072.2815073

[29] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming
Verification Hardness: An Efficient Algorithm for Testing Subgraph Isomorphism.
Proc. VLDB Endow. 1, 1 (aug 2008), 364–375. https://doi.org/10.14778/1453856.
1453899

[30] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the
ACM (JACM) 23, 1 (1976), 31–42.

[31] Zhengyi Yang, Longbin Lai, Xuemin Lin, KongzhangHao, andWenjie Zhang. 2021.
Huge: An efficient and scalable subgraph enumeration system. In Proceedings of
the 2021 International Conference on Management of Data. 2049–2062.

[32] Qian Zhu, Jianhua Yao, Shengang Yuan, Feng Li, Haifeng Chen,Wei Cai, and Quan
Liao. 2005. Superstructure Searching Algorithm for Generic Reaction Retrieval.
J. Chem. Inf. Model. 45, 5 (2005), 1214–1222. https://doi.org/10.1021/CI0496402

8

https://janusgraph.org/
https://github.com/alibaba/GraphScope/tree/main/interactive_engine/benchmark/queries/cypher_queries/experiments/neo4j
https://github.com/alibaba/GraphScope/tree/main/interactive_engine/benchmark/queries/cypher_queries/experiments/neo4j
https://github.com/alibaba/GraphScope/tree/main/interactive_engine/benchmark/queries/cypher_queries/experiments/neo4j
https://www.tigergraph.com/
https://doi.org/10.14778/3184470.3184473
https://doi.org/10.14778/3184470.3184473
http://tinkerpop.apache.org/
https://aws.amazon.com/neptune/
https://doi.org/10.1145/1824795.1824796
https://hal.archives-ouvertes.fr/hal-01201933
https://doi.org/10.1145/2463676.2465300
https://doi.org/10.1073/pnas.1710547115
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1710547115
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1145/3035918.3056445
https://www.usenix.org/conference/atc23/presentation/lai
https://www.usenix.org/conference/atc23/presentation/lai
https://ldbcouncil.org/benchmarks/snb/
https://arxiv.org/abs/2401.17786
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.14778/1453856.1453899
https://doi.org/10.14778/1453856.1453899
https://doi.org/10.1021/CI0496402

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Neo4j
	2.2 GOpt

	3 GOpt on Neo4j
	3.1 System Overview
	3.2 Query Parsing and Transformation
	3.3 Type Inference
	3.4 Query Optimization
	3.5 Plan Conversion and Execution

	4 Experiments
	4.1 Experiment Settings
	4.2 Experiment Results

	5 Related Works
	6 Conclusion
	References

