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ABSTRACT
The European Union’s Artificial Intelligence Act (AI Act) intro-
duces comprehensive guidelines for the development and oversight
of Artificial Intelligence (AI) and Machine Learning (ML) systems,
with significant implications for Graph Neural Networks (GNNs).
This paper addresses the unique challenges posed by the AI Act
for GNNs, which operate on complex graph-structured data. The
legislation’s requirements for data management, data governance,
robustness, human oversight, and privacy necessitate tailored strate-
gies for GNNs. Our study explores the impact of these requirements
on GNN training and proposes methods to ensure compliance. We
provide an in-depth analysis of bias, robustness, explainability,
and privacy in the context of GNNs, highlighting the need for fair
sampling strategies and effective interpretability techniques. Our
contributions fill the research gap by offering specific guidance for
GNNs under the new legislative framework and identifying open
questions and future research directions.

VLDBWorkshop Reference Format:
Barbara Hoffmann, Jana Vatter, and Ruben Mayer. Vision Paper: Designing
Graph Neural Networks in Compliance with the European Artificial
Intelligence Act. VLDB 2024 Workshop: 3rd International Workshop on
Large-Scale Graph Data Analytics (LSGDA 2024).

1 INTRODUCTION
The European Union has taken a significant step forward in the
technological domain with the publication of the European Union
Artificial Intelligence Act (AI Act) [41]. This legislation is notable
for its provision of guidelines aimed at developing frameworks
for Artificial Intelligence (AI) and overseeing Machine Learning
(ML) practices. These frameworks possess considerable potential, as
they could serve as a blueprint for future endeavors in the domain
of AI and ML. The legislation introduces several requirements,
for instance data management and data governance, robustness
of training data and models and human oversight, which highly
impacts Graph Neural Network (GNN) training. Therefore, it is
important to know which requirements there are, understand their
implications on GNN training and build the model accordingly.

GNNs have unique characteristics that warrant a closer exam-
ination. Unlike traditional ML models, GNNs operate on graph-
structured data, which introduces complexities in data connectivity
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and relationships. These special characteristics justify the need for
a detailed analysis of the AI Act’s impact on GNNs. While there
are initial studies examining the AI Act’s effects on ML systems
[24, 43, 45], no specific research has been conducted on GNNs. In
this paper, we argue that GNNs pose specific challenges in terms of
core requirements of the AI Act, such as data governance, robust-
ness, explainability and privacy, that demand a closer investigation.
This gap underscores the importance of our work in providing tai-
lored guidance for GNNs under the new legislative framework and
discussing open issues that demand further research.

In detail, our contributions are:

• Detailed examination of the requirements of the AI Act,
tailored precisely to the use of GNNs to ensure compliance
with the AI Act. This enhances the current discussion of
the AI Act to the specifics of GNNs.

• Investigation of data and model bias in graphs and GNNs,
particularly due to unfair sampling during GNN training.
This opens a new perspective on data management tech-
niques for GNNs beyond model accuracy and training run-
time.

• Exploration of human oversight and explainability with
concrete examples of GNN decision-making. We highlight
the inherent trade-off between the comprehensibility and
accuracy of an explanation, and articulate the demand for
further (user) studies to better understand the effect of
explanations on AI system stakeholders.

• Analysis of privacy-preserving techniques designed for
GNN training. In particular, we stress that while adding
noise to features and labels via Differential Privacy tech-
niques is well-explored, GNNs additionally expose con-
nections between entities—which can themselves contain
privacy-sensitive information.

• Asking important questions arising from our investiga-
tions and identifying open research areas in this field. This
promises to spawn further research in this area.

In Section 2, we provide an introduction to GNNs and explain
the basics of the AI Act, detailing its implications for GNNs. In
Section 3, we describe the experiments we conducted and present
the results. The open questions that arise from these results are
discussed in Section 4. Finally, we review related work in Section 5
and draw conclusions in Section 6.

2 BACKGROUND
This section gives a short introduction to GNNs as well as an
overview of the four risk categories delineated by the AI Act, along
with their implications for the training of GNNs. Additionally, an
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Figure 1: Risk Pyramid as described in the AI Act

overview of the prerequisites outlined in the AI Act for high-risk
systems is provided.

2.1 Graph Neural Networks
GNNs are specialized neural networks devised for analyzing data
represented in graph forms [17, 36], such as networks found in
social or citation systems. GNNs process data by transforming
the initial node features into embeddings via an iterative mecha-
nism known as message passing. During this process, each node
computes new embeddings by aggregating and synthesizing the
embeddings from its adjacent nodes, an operation underpinned by
neural networks that are trainable at each layer of the GNN. The
input features at the initial layer are raw node features, which are
systematically enhanced through successive layers to refine the
embeddings. This refinement process is driven by the objective of
minimizing a predefined loss function, typically optimized through
algorithms like stochastic gradient descent. The resulting embed-
dings, which encapsulate the essential structural and feature-based
information of the nodes or the entire graph, are subsequently uti-
lized in downstream applications such as node classification, link
prediction, and graph classification. This makes GNNs particularly
effective for tasks where data is inherently structured as graphs,
such as social networks or citation networks. For a deeper technical
explanation of GNNs, Vatter et al. [42] can be consulted.

2.2 AI Act Basics
The European Artificial Intelligence Act contains a classification
schema for Artificial Intelligence systems. This schema is predi-
cated on a risk-based approach and segregates AI systems into four
distinct categories.

(1) Minimal Risk: AI systems falling under this category are char-
acterized by their low potential to inflict harm upon the user.
Examples of such systems include GNNs utilized in decision
support systems, such as recommendation systems [15, 46], or
GNNs employed in spam filters for emails [11]. It is noteworthy
that the regulations stipulated by the EU AI Act do not extend

to this category of AI systems, thereby obviating the need for
any regulatory action.

(2) Limited risk: This category refers to risks associated with a lack
of transparency in AI usage. AI systems that fall into this cate-
gory are subject to the requirement of extended transparency.
The category comprises for example AI systems that use GNNs
in chatbots [29] or emotion recognition systems [26]. The user
interacting with these kinds of AI systems needs to be made
aware of interacting with a machine so that they can take an
informed decision to continue or step back. The content gener-
ated by such systems must also be marked as AI generated.

(3) High risk: Encompasses AI systems that process critical per-
sonal data or could put the life and health of citizens at risk.
Examples of such systems include medical devices [16, 39], sys-
tems that control access to education [37], and border control
systems. GNNs can be used in all the areas mentioned. For these
systems, an enhanced level of quality management is mandated.
The criteria for this include data governance, a possibility for
human oversight and the robustness of the applications.

(4) Unacceptable Risk: AI systems that fall into this category are
deemed illegal. These are for example systems that manipulate
the user or contribute to social injustice.
With Article 53, the AI Act also includes a category for Gen-

eral Purpose AI (GPAI). An AI system is classified as GPAI if it is
designed to perform a wide variety of tasks across different con-
texts and applications. This encompasses capabilities like image and
speech recognition, audio and video generation, pattern detection,
question answering, and translation. GPAI systems are subject to
additional documentation and risk management requirements, be-
yond the standard risk-based requirements. Furthermore, outlined
in Article 51, there is a subcategory for Systemic Risk, which is
determined by the computing power used during training.

2.3 AI Act Requirements for GNNs
The risk category denoted as “High Risk” warrants special attention
in this context. The subsequent section provides an overview of
the pivotal requirements delineated within the AI Act concerning
the training and operation of high-risk GNNs. All of these criteria
are outlined in the legal document [41], with a summary provided
in Table 1 for quick reference.

Risk category Article Section
Data Governance 10 2.3.1

Robustness 15 2.3.2
Human Oversight 14 2.3.3

Privacy (69), (27), (57), 5 2.3.4
Table 1: Overview: Requirements in the AI Act

2.3.1 Data Management and Data Governance. The AI Act man-
dates that the data used in AI systems must comply with data
governance requirements. This encompasses data sets utilized for
training, validation, and testing purposes.

There is no universally applicable definition of the term data
governance, neither in the scientific community nor among practi-
tioners in the field of information systems [2, 32]. The definition



provided by the AI Act involves ensuring that the data used for
training, validation, and testing is relevant, representative, accurate,
and as error-free as possible. This includes practices such as proper
data collection and preparation, detecting and mitigating bias, and
ensuring the data is suitable for the AI system’s intended purpose.

In the context of the AI Act, Article 10 delineates the protocols for
ensuring effective data governance. It necessitates a comprehensive
scrutiny of AI systems, particularly concerning the potential for
bias. The manifestation of bias, whether during the training phase
or the deployment of AI systems, can precipitate detrimental effects.
The primary objective is to forestall any bias that could compromise
individual safety and health, infringe upon fundamental rights, or
engender discrimination. As per the stipulations of the EU AI Act,
such bias must be detected, prevented and mitigated. This is an
essential prerequisite for maintaining the integrity and fairness of
AI systems.

2.3.2 Robustness. According to the AI Act, Article 15, AI systems
designed to continue learning post-deployment must be designed
to reduce or eliminate the risk of biased outcomes. This require-
ment also includes ensuring that any potential biases are effectively
addressed through suitable risk mitigation strategies. This process
of ongoing learning and potential bias reinforcement is referred to
as a feedback loop.

The robustness of a model refers to its ability to provide consis-
tent and reliable predictions across different data sets and under
different conditions. A robust model should also be able to respond
well to new, unknown data or to data with minor disturbances. If
a model is biased, it is less robust. Bias occurs when a model sys-
tematically prefers or excludes specific elements of the data, which
may arise from imbalances in training data, errors in model design,
or suboptimal sampling techniques.

2.3.3 Explainability for Humans. Article 14 of the AI Act stipu-
lates that AI systems must be engineered to enable effective human
oversight, ensuring the minimization of risks to health, safety, and
fundamental rights. The legislation further mandates that the out-
puts of these AI systems should be interpretable and the derivation
of the results should be understandable. Many AI models, in partic-
ular deep neural networks, are referred to as a black box. To make
decisions comprehensible, existing interpretability techniques and
methodologies from the domain of explainable artificial intelligence
(xAI) can be utilized.

Common xAI methods include model-agnostic techniques like
Local Interpretable Model Agnostic Explanations (LIME) [35],
which approximates black-box models locally with interpretable
ones, and SHapley Additive exPlanations (SHAP) [28], which as-
signs importance values to features based on cooperative game
theory. Model-specific methods include feature importance for tree-
based models [6] and visualization techniques like saliency maps
for neural networks [38], all aimed at increasing the interpretability
of AI models.

To enhance the interpretability of GNNs, methods like GNNEx-
plainer [47] have been developed. GNNExplainer has been imple-
mented in PyTorch Geometric [33] as well as in the Deep Graph
Library (DGL) [8]. This method operates post-hoc, meaning it ex-
plains GNN decisions after they are made. It accomplishes this by
analyzing subgraphs within the larger input graph. The output

consists of a concise subgraph from the original input, along with
a selection of node features deemed most influential in driving the
model’s predictions. These explanations are localized to individual
instances, necessitating retraining for each new instance [47].

2.3.4 Privacy. The EU AI Act contains various passages for the
secure handling of personal data, emphasizing its protection and
confidentiality. For instance, legal regulations mandate enhanced
safeguarding of data utilized in the creation of AI systems or in
the mitigation of bias within these systems. In the context of AI
systems, adherence to all relevant data protection laws, such as
the General Data Protection Regulation (GDPR), is obligatory. This
safeguarding can be accomplished through the implementation of
anonymization and encryption techniques, which in GNNs can be
done by the anonymization of the features or by adding noise to the
graph, for example by adding or removing edges or nodes [25, 36].

3 ANALYSIS
In this section, we examine the areas of influence — Data Gov-
ernance, Robustness, Explainability, and Privacy — identified in
Section 2.3 with regard to their precise impact on GNNs. The focus
hereby lies on bias in the data and the model, human oversight and
privacy.

3.1 Data Governance
High-risk AI systems must be trained with data that meets certain
standards and requirements. An important point here is an investi-
gation into possible biases that could affect the health and safety of
individuals, have a negative impact on fundamental rights or lead
to discrimination prohibited by the AI Act, especially if the data
outputs influence the inputs for future operations [41].

If training data exhibits an unbalanced feature or label distribu-
tion, this can lead to the aforementioned bias. Technically speaking,
any dataset that shows an unequal distribution among its classes
can be regarded as imbalanced. Yet, the prevalent view within the
community is that imbalanced data specifically refers to datasets
with substantial disparities between classes. This specific type of
inequality is known as between-class imbalance. Another form
of imbalance is the within-class imbalance, which focuses on the
distribution of representative data for various subconcepts within
a single class [21]. In addition to the class imbalance there is also
a label imbalance. The Difference in Proportions of Labels (DPL)
metric compares the proportion of observed outcomes with posi-
tive labels in one subgroup to the proportion in another subgroup
within a training dataset [4].

In this paper we focus on between-class imbalance as well as
label imbalance and measure these values according to existing im-
plementations [3, 4]. The results are shown in Table 2. The following
applies to both imbalance metrics: the closer to zero, the better the
distribution of the data set; the further away from zero, the greater
the imbalance. As can be seen in Table 2, some datasets yield low
class and label imbalance, while others show high imbalance in
classes, labels, or both.

Key Takeaway: Class and label imbalance are common issues
across various graph datasets. It is important to monitor such im-
balance, and, if appropriate, take corrective action.



Table 2: Overview of the datasets

Name #Nodes #Edges Sensitive Feature Class Label LabelAttribute Size Imbal. Imbal.
german 1,000 44,484 gender 27 -0.380 -0.298 high/low credit risk

recidivism 18,876 642,616 ethnos 18 0.013 -0.033 bail/no bail
credit 30,000 304,754 age 13 -0.821 -0.648 payment default/no default
pokec-n 66,569 1,100,663 region 266 -0.422 -0.021 working field
pokec-z 67,796 1,303,712 region 277 -0.297 -0.021 working field

3.2 Robustness
Sampling is amethod to efficiently train GNNs on large-scale graphs.
When performing sampling during GNN training, a subset of data
points - such as nodes, edges, or subgraphs - is selected from the full
graph. Before each training epoch, new samples are constructed.
As numerous sampling strategies with different objectives exist,
the choice of sampling method can significantly influence both
the performance and the bias of the model. Inadequate or dispro-
portionate sampling may result in the neglect of crucial segments
of the graph, thereby distorting the overall representation of the
data. This, in turn, affects the model’s ability to generalize and per-
form accurately, underscoring the intricate link between sampling
strategies and the robustness of machine learning models [27]. In
the following, we explore whether sampling can influence the bias
during training as only a selected subset of nodes and edges is used
for training. This could lead to an under-representation of certain
classes or labels. For our experiments, we use the datasets german,
recidivism, credit, pokec-n and pokec-z as well as the sampling
strategies Neighbor [19], VR-GCN [7], LABOR [5], and ShaDow
[48]. We additionally include no sampling as a baseline. The 2-layer
GCN and the sampling strategies are implemented with DGL. Our
evaluation is based on the Area Under the Curve (AUC), Statistical
Parity [13] and Equality of Opportunity [20]. While Statistical Par-
ity measures how independent the predictions of a model are to a
sensitive attribute, Equality of Opportunity denotes to which extent
the predictions are performed equally well across all attributes. For
both fairness metrics, lower values indicate a fairer model, while
for AUC, higher values are better.

In Figure 2, we show the experimental results. Across all datasets
and metrics, the values of Neighbor sampling and LABOR usually
are close to the baseline (no sampling). For parity and equality,
they sometimes even lead to better results than the baseline, with
the exception of LABOR leading to worse equality on credit. VR-
GCN, on the other hand, has a higher AUC score than the baseline
and other strategies, but can result in higher values of parity and
equality, especially when using the german or credit credit graph.
The fourth sampling strategy, namely ShaDow, proves less suitable.
A larger bias is induced compared to the other methods, especially
for the german, credit, and pokec-z dataset, while the AUC is
lower than the baseline.

Neighbor sampling chooses the nodes and edges at random
which is beneficial for the model bias since all groups and attributes
are treated equally. VR-GCN also is a node-wise method, but uses
importance scores to prioritize certain nodes. As VR-GCN is based
on historical activations, valuable information is preserved during

the sampling step, but bias can be reinforced by favoring selected
nodes. In this way, certain groups or attributes might be over- or
underrepresented in the samples. LABOR is a layer-wise strategy
using a specialized optimization method based on vertex-variance
and restricting the size of the neighborhood to a small number.
Therefore, a higher AUC can be achieved, but the model might
not be as fair compared to other methods due to the specialized
selection of nodes and edges. The fourth method, namely ShaDow,
works in a subgraph-based fashion. The strategy first aims to form
shallow subgraphs with a depth typically around 2 or 3. After that,
sampling takes place within the subgraphs. Possibly important con-
nections between and within clusters might be cut, which could
lead to a loss of information needed for training and higher parity
and equality values.

Key Takeaway: Our experiments have shown that bias can be
induced or reinforced when using sampling-based GNN training.
Some strategies lead to higher performance values, but also to a
more biased model. Robustness against model bias needs to be taken
into account when designing GNN sampling methods. This aspect
has often been neglected.

3.3 Explainability
In this section, we delve deeper into the possibilities for GNN ex-
planation. Our exploration is based on the two implementations
of GNNExplainer outlined in Section 2.3.3 which allow for the
visualization of subgraphs and feature importance.

GNNExplainer is capable of being applied to various scenarios,
including graph classification and link prediction. In this paper,
we restrict the scope of our experiments to node classification. For
the explanations provided, a basic Graph Convolutional Network
(GCN) consisting of two convolutional layers was utilized. This net-
work integrates linear transformations with Rectified Linear Unit
(ReLU) activation functions and incorporates dropout to enhance
generalization. We used the dataset german as the foundational
data for these experiments. The dataset offers insights into whether
a customer with specific features qualifies as a good customer with
low credit risk. Similarly, the node classification addresses the same
question: determining whether the selected node, representing a
customer, is credit-worthy or not.

The experiments were conducted using both 2-hop and 1-hop
neighborhoods in PyTorch Geometric1. Figure 3 illustrates the ex-
planations generated from these experiments. It is evident that

1The visualizations generated by DGL are consistent in content, despite differences in
their layout. Due to this uniformity in content, they are not depicted in the paper.



Figure 2: Results for the metrics AUC, parity, and equality for the different datasets and samplers. AUC: higher values are
better (1.0 is best). Parity and equality: lower values are better (0.0 is best).

increasing the number of hops results in a more complex explana-
tory graph. Figure 3b shows the 2-hop result in a representation that
is essentially imperceptible to the human eye, potentially making it
challenging for many stakeholders of an AI system to comprehend.
For the 1-hop neighborhood (Figure 3a), the graph remains simple
and comprehensible for human interpretation; however, it raises
the question of whether such simplicity adequately captures the
complexity of node classification. In both scenarios, only the nodes
that impacted the decision are depicted, and it remains uncertain
whether this is sufficient for a meaningful explanation. For further
analysis, nodes can be mapped to their corresponding features, of
which an excerpt is shown in Table 4.

The features of the nodes are pivotal in the process of node classi-
fication. The visualization output of PyTorch Geometric is displayed
in Figure 3c, which shows the most important features leading to a
specific node’s classification2. Additionally, the mapping of feature
numbers to their corresponding meanings is detailed in Table 3.

Feature Number Meaning
5 Loan Duration
3 Single
6 Purpose of Loan
4 Age
9 Years at current home
7 Loan Amount
8 Loan Rate as percent of income
21 Other Loans at store
2 Foreign worker
26 Unemployed

Table 3: Mapping of important features

Key Takeaway: Graphs are inherently complex structures. Con-
sequently, methods that elucidate the behavior of a GNN through
a graph also tend to be intricate. Simplified explanations, such
as using only a 1-hop neighborhood or focusing solely on feature

2An alternative method to explain GNNs is through the GraphLIME framework [22].
GraphLIME utilizes an Hilbert-Schmidt Independence Criterion (HSIC) Lasso model
to provide localized, nonlinear explanations for the predictions made by GNNs. These
explanations are limited to the K most representative features as the explanation for
the prediction of a particular node. The approach integrates both the local structure of
the graph and nonlinear dependencies to enhance understanding. Despite employing
a distinct approach, GraphLIME solely focuses on visualizing the feature importance
and the output looks similar to Figure 3c.

importance without including graph information, are more straight-
forward to comprehend but provide less detailed information. So
there is an inherent trade-off between simplicity and the depth of
information in GNN explanations.

3.4 Privacy
When it comes to maintaining privacy within graph-based data,
one of the main concerns are the node features. Features must be
kept confidential and anonymized using appropriate methods as
needed. Before training a GNN, data anonymization techniques can
be employed to inhibit any potential identification of individual
users, thus protecting user privacy throughout the model training
process. When GNNs are employed, they process edges using ma-
chine learning. This raises privacy concerns regarding the edges:
Should they be considered private data associated with a specific
node, or are they exempt from privacy considerations?

Assuming the data is confidential, Differential Privacy (DP) [12]
could be employed as a strategy to protect privacy. The fundamental
principle of DP is that when querying a dataset consisting of N
individuals, the outcome should be, in probabilistic terms, virtually
the same as if the query were run on a similar dataset that has either
one fewer or one additional individual. This approach ensures the
privacy of each individual with a certain probability. To achieve this
level of probabilistic indistinguishability, adequate noise is added
to the results of the query, masking individual data points while
still providing useful aggregate information [31].

When applying DP to GNNs, several challenges arise. As out-
lined before, DP involves adding noise to the data, which, in the
context of graphs, could mean adding or removing edges. Such mod-
ifications can significantly alter the dataset. If DP is implemented in
a GNN, it is essential to evaluate whether the anonymity provided
compromises the utility of the model. In cases of uncertainty, the
importance of maintaining privacy versus the utility of the data
must be carefully weighed. Moreover, it is crucial to determine
the maximum amount of noise that can be introduced before the
data loses its meaning due to excessive alteration. This threshold
may vary from one GNN to another, as different structures have
different tolerances for noise. However, these questions are largely
unexplored.

Key Takeaway: Privacy in GNNs concerns not only the node
features, but also the structural information of the graph itself, i.e.,
the edges. More research is needed on privacy-preserving GNN
training and inference.



(a) Subgraph 1-hop (b) Subgraph 2-hop (c) Important features

Figure 3: Overview of PyTorch Geometric generated grahps and important features

Table 4: Listing of important nodes with a selection of their features

Credit Gender Foreign Single Age Loan PurposeOf Loan LoanRateAsPer-
Worthy Worker Duration Loan Amount centOfIncome

597 -1 Male 0 1 36 24 Business 4241 1
190 -1 Male 0 1 54 24 Business 4591 2
556 -1 Female 0 0 28 18 NewCar 2278 3
439 -1 Female 0 0 26 12 Business 609 4
575 1 Female 0 0 24 15 Furniture 2788 2
132 1 Male 0 1 27 15 Furniture 2708 2
442 1 Male 0 1 29 20 Other 2629 2
889 1 Male 0 1 40 28 UsedCar 7824 3
525 1 Male 0 1 30 26 UsedCar 7966 2
402 -1 Male 0 1 27 24 Business 8648 2
653 -1 Male 0 1 42 36 NewCar 8086 2

4 OPEN QUESTIONS AND RESEARCH
DIRECTIONS

In this section, we look at the questions that arise from our investi-
gations and experiments and propose new research directions.

4.1 Bias and Robustness
For our experiments, we use standard sampling methods which do
not specifically aim at reducing bias. Our results show that fairness
can highly depend on the chosen sampling method. Consequently,
the question arises how to better ensure fairness during sampling.
Fair random walk strategies, such as those proposed by Rahman et
al. [34] and Zhang et al. [49] could be considered in GNN sampling.
Further, our experiments are evaluated with metrics commonly
used in the field of machine learning. However, when using graphs
and GNNs, other factors such as feature distribution and structure,
particularly the nature of the connections, play a crucial role in
regards to fairness. More research is needed in the directions of
designing fairness metrics adapted to the specific characteristics of
GNNs.

Furthermore, it is essential to consider whether GNNs are robust
against data distribution shifts. A data distribution shift occurs
when the data a model uses changes over time, leading to a decline

in prediction accuracy. Ensuring robustness in GNNs means main-
taining accurate classification performance with new and evolving
data.

We summarize the open questions as follows: How can sampling
strategies be specifically adapted and optimized for different types
of graph data to ensure comprehensive fairness without compro-
mising model performance? What additional or refined fairness
metrics need to be developed?What specific adaptations are needed
for GNNs to handle dynamic and evolving graph data, and how can
these techniques be seamlessly integrated into GNN frameworks?

4.2 Explainability and Privacy
Several questions arise in the context of explainability. Firstly, for
whom the output of the AI system needs to be explained. Various
stakeholders could come into consideration: The end customer,
who may be influenced by a system’s decision, the employee of
the company in which the AI system is used and the auditor of a
supervisory authority, who examines compliance with the AI Act
in companies, could all be equally interested.

Each of these parties has a unique perspective on the required
explanation of an AI decision. For example, the developer of an AI
system seeks highly precise explanations to understand its func-
tionality and requires specific information for debugging. They



typically prioritize less on protecting the privacy of individual
users’ information, viewing the data as abstract rather than per-
sonal. Conversely, for the user, protecting personal data is a top
priority, and the accuracy of the explanation may be secondary to
this concern. For auditors, the primary interest is ensuring that
there is an explanation of the AI system’s decisions. Likewise, each
of these individuals has their own level of authorization for insights.
This implies several privacy issues, as it must be clarified who has
the right to view specific data. To illustrate this concept with a
specific example: In an online social network, User A receives the
explanation that Group G was suggested to him because contact B
and his contact C - who is not directly connected to A - are also in
similar groups. This explanation allows User A to gain insight into
contact C’s affiliations, even though C has not directly shared this
information with A.

It is also important to evaluate whether the selected explanatory
approaches are appropriate. While explanations using subgraphs
and key features are commonly employed, alternative forms such
as text or images might be more comprehensible to some groups
of users. Additionally, the methods we analyzed only highlight the
important nodes and features. However, having an overview of
the unimportant ones might also be beneficial, as it could provide
insights for improving the training process of an AI model. To make
an informed assessment of which method is preferred and which
information in detail would be helpful for different user groups,
conducting a user study would be essential [23]. Finally, assessing
the effectiveness of explanability methods for human oversight
is an interdisciplinary effort that requires further research [40],
especially for GNNs which are potentially much more difficult to
explain and understand due to their graph structure.

5 RELATEDWORK
Various papers have already focused on presenting the content
of the AI Act in an understandable way [14, 30] or explained the
impact of the AI Act on ML systems [24, 43, 45]. The sub-topics
we have identified as challenges for GNN training have also been
highlighted in the literature. For example, [9] and [10] address
bias in GNNs. As mentioned in Section 2.3.3, several methods exist
for making GNNs explainable, including GNNExplainer [47] and
GraphLiME [22], which we use in our work. Other approaches
focus on more theoretical aspectes of explanations [1]. Studies have
also tackled the security and privacy of GNNs, either by explaining
security vulnerabilities and privacy-enhancing measures, as seen
in survey articles [18, 50] or practical implementations such as
SecGNN [44].

Despite these contributions, the intersection of the two topics
- how the requirements set out specifically in the AI Act affect
GNNs - has not yet been investigated. Our work uniquely fills
this gap by offering a detailed examination of how GNNs can be
designed to comply with the AI Act. By addressing these points, our
work uniquely contributes to the field by bridging the gap between
GNN technology and regulatory compliance, providing practical
guidance and highlighting the need for further research on the
intersection of these topics.

6 CONCLUSION
The AI Act establishes significant legal requirements for AI and
ML, impacting crucial areas within these fields. In our paper, we
demonstrated that the AI Act also presents critical challenges for
GNNs. Our initial research on this topic has uncovered numerous
additional open questions that need to be addressed.

To advance this field, we propose several concrete steps for future
research. One key area is developing compliance rules specifically
tailored to GNNs, including initial hypotheses on integrating AI Act
aspects into GNN design and training. Additionally, more detailed
studies on bias mitigation techniques within GNNs are necessary,
focusing onmodels that reduce bias while maintaining performance.
Enhancing explainability methods, such as refining GNNExplainer
and GraphLiME, is also crucial for balancing transparency and
accuracy. Finally, privacy-preserving techniques for GNNs warrant
further exploration. Future research should focus on implementing
methods like Differential Privacy and investigating their impact on
privacy and model efficacy. By addressing these areas, we aim to
bridge the gap between regulatory compliance and technological
advancement in GNNs.
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