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ABSTRACT

With the ever-growing size of real-world graphs, optimizing Graph
Neural Network (GNN) training has become essential. Two key
methods for this are graph sparsification and GNN sampling, both
aim at reducing graph size while preserving valuable information.
The question arises what kind of information should be preserved
and what a reasonable graph size is. We propose combining ran-
dom graph sparsification with GNN sampling, showing that this
approach can significantly reduce training time while maintain-
ing accuracy. Our experiments demonstrate that sparsification to
around 40% of the original graph and sampling with a fanout pa-
rameter of 4 yields the best results in terms of training time and
accuracy. Beyond training time, also inference time can be decreased
up to 75% which enables scalability for time-critical applications
such as fraud detection. Finally, we identify open challenges and
new research directions, including sampling-aware graph reduction
methods, mining new graph datasets, and the prevention of bias.
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1 INTRODUCTION

Real-world graphs are rapidly growing with billions of nodes and
edges [17, 20]. They can be found all around us in various domains
including social networks, citation graphs, and co-purchasing net-
works [21, 29]. Graph Neural Networks (GNNs) have gained greater
attention throughout the past years and are used to learn and make
predictions on those graphs. However, with the ever-growing size
of real-world graphs, the need for optimization techniques has
emerged to allow for efficient and scalable training. Numerous
methods have been developed, for instance, graph partitioning
[24, 26], model simplification [37, 46] and compression [11, 35].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

Maurice L. Rochau
maurice.rochau@outlook.com

Hans-Arno Jacobsen
University of Toronto
Toronto, Canada
jacobsen@eecg.toronto.edu

Resource-efficient training can drastically reduce costs in the case
of large graphs. If inference needs to be repeatedly calculated or
is time-critical, such as in fraud detection [34], spam identification
[45, 47] or recommender systems [14, 43, 53], it is important to
allow for a fast inference step. Two optimization methods which
train on a subgraph instead of the full graph are graph reduction
[19] and sampling [32, 42]. Graph reduction first reduces the size of
the graph and then performs graph algorithms such as GNN train-
ing. Sampling, on the other hand, draws new subgraphs at each
training step. In this way, different nodes and edges are included
throughout the whole training process, leading to a stable accu-
racy. The assumption of both methods is that in case of large-scale
graphs, not all nodes and edges are needed to obtain satisfying
performance. The question arises how small these graphs can be
and how large they need to be when training and making predic-
tions with GNNs. What kind of information should be preserved
when reducing the graph? Can we combine the two optimization
methods graph reduction and sampling-based GNN training? Do
we get a better performance by combining both methods, or do we
lose too much information?

We explore these questions against the background of the Law
of Large Numbers (LLN). LLN states that if a sufficient number of
independent observations have been collected, the mean of these
observations will converge around (weak LLN) or on the true value
(strong LLN). We theorize, alongside the lines of graph reduction
and sampling, that for satisfactory GNN results, large-scale graphs
are not necessary.

This work investigates graph reduction combined with graph
sampling during GNN training. We systematically analyze existing
methods for graph reduction and GNN sampling as well as the
underlying theory. We propose to draw random subgraphs out
of large-scale graphs and perform sampling-based GNN training.
In this way, we demonstrate that relevant relationships can be
preserved and no additional bias is induced. We infer the findings
to application domains and future research directions.

Our contributions can be summarized as follows:

e We investigate how small a graph can be and how large a
graph needs to be in order to learn and predict with a GNN.

o We explore graph reduction combined with sampling dur-
ing GNN training.
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e We investigate specialized as well as random graph reduc-
tion methods and show that the latter is able to preserve
important relations within the graph without the need for
intensive pre-processing steps.

o We highlight how graph reduction and sampling can influ-
ence bias within a graph.

e We thoroughly analyze graph reduction in combination
with sampling methods to identify practical implications,
open questions, and future research directions.

The paper is organized as follows. First, we give an introduc-
tion to Graph Neural Networks, Graph Reduction and Sampling
during GNN training in Section 2. In Section 3, we provide a theo-
retical and empirical analysis. The latter presents our experimental
methodology as well as corresponding results. We discuss open
challenges and future research directions in Section 4. Section 5
gives an overview of related work, and Section 6 summarizes our

findings.

2 BACKGROUND

A graph G can be formally denoted as G = (V, E) where V is the
set of vertices, also called nodes, and E the set of edges. A vertex v
represents an object while an edge e models the relation between
two objects. An edge e is described by e = (a, b) where a and b are
nodes that are connected by e. Consequently, a graph is a collection
of edges and nodes, showing how different nodes relate to each
other through directed and undirected edges.

2.1 Graph Neural Network Training

GNNss are a specialized machine learning technique designed to
learn and predict on graph-structured data [16, 41]. Each node
initially contains feature information and depending on the appli-
cation, edges can also contain features. At each layer, two main
steps are performed: aggregation and update. During the aggre-
gation phase, each node exchanges messages with its neighbors,
sharing their current representation, also called embedding. This is
done using an aggregation function

al®) = AGGREGATE® ({h{* "V |u € N(v)}) 1)

where hl(lkfl) |u € N(v) represents the representations from the
previous layer of the neighboring vertices N(v) [18]. Subsequently,
each vertex combines the received representations and updates its
own state. This update phase is formally defined as

h%) = uPDATE®) (a0, 1)y @)

where the representation of node v of the previous layer hi(,k_l) is
combined with the aggregated representations az(,k) .

When using a k-layer GNN, the k-hop neighborhood of a node
is explored. According to a given loss function, the model weights
are adapted, and a new epoch is started using stochastic gradient
descent. As soon as a given number of epochs is performed, the
final model weights can be used to compute node (and edge) repre-
sentations for downstream tasks on node-, edge-, and graph-level.

2.2 Graph Reduction

There are different ways to reduce the size of a graph. The methods
can be categorized into graph sparsification, graph coarsening, and

graph condensation [19]. In the following, we give an overview of
graph sparsification techniques. In Section 5, we give an overview
of graph coarsening and graph condensation techniques since they
are highly related to our approach.

Graph sparsification represents a given graph by a sparse sub-
graph which includes a subset of nodes and edges. While the graph
is sparsified, the aim is to maintain the graph properties. Depending
on the downstream task, this could be the preservation of clusters,
graph connectivity, or important nodes. A simple and intuitive way
to sparsify the graph is by randomly selecting a set of nodes and/or
edges with an equal probability to be included [7]. More specialized
techniques include setting the probabilities proportional to edge
weights or pruning edges in relation to the corresponding node
degree [39] to maintain high graph connectivity. Other sparsifica-
tion techniques are Spanning Forest or t-Spanner [7]. Forest Fire
[28] adds one edge after another starting from a given node. This is
done until a threshold is reached. In their method, Feng et al. [13]
first identify an extremely sparse subgraph which is then expanded
iteratively. In recent years, learning-based methods have been de-
veloped. In GSGAN, a generative adversarial network (GAN) [15]
is used to sparsify graphs for community detection. To preserve
subgraph modularity, SparRL [52] uses deep reinforcement learn-
ing. Here, edges are sequentially pruned based on a plug-in reward
function ensuring task flexibility. Another type of sparsification
strategy deals with graph learning methods in combination with
sparsification. Here, the objective is to maintain the performance
of GNNss in relation to the prediction task. Salha et al. [40] find a
subgraph according to k-core decomposition, train the graph learn-
ing model, and finally approximate nodes that are not included in
the subgraph. Interpretable Graph Sparsification (IGS) [30] extracts
edge importance values obtained by GNNExplainer [55] to priori-
tize nodes with a high importance value during the sparsification
step. The graph, its features, and model parameters are dynamically
pruned during GNN training by the Comprehensive Graph Gradual
Pruning (CGP) method [31]. This ensures efficient training and fast
inference.

Apart from random sparsification, the methods usually have
certain objectives or application domains. Learning-based methods
adapt to the use case, but might be very resource intensive. Usually,
edges are pruned instead of nodes. The underlying assumption is
that edges contain redundant information. Thus, some edges can be
deleted without losing much information. Further, some methods
calculate importance values based on characteristics like the node
degree or the connectivity. Thus, these methods assume that some
nodes or edges are more important than other ones.

2.3 Sampling during GNN training

In contrast to graph sparsification where the graph is reduced be-
fore performing graph algorithms such as GNN training, sampling
constructs and uses new subgraphs at each GNN training step.
When drawing new subgraphs at each training step, different nodes
are included which leads to a stable accuracy. The main effects
of sampling are reduced training time, less memory consumption,
and faster convergence. Numerous sampling strategies have been
developed and can be categorized into node-wise [6, 18], layer-wise
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Figure 1: Overview of our experimental setup

[1, 5, 63], subgraph-based [8, 57, 58] and learning-based [56, 61]
sampling.

Given a target node, k neighboring nodes are chosen at random
or based on an importance score when performing node-wise sam-
pling [6, 18]. The parameter k is called fanout and given by the user.
This step is independently repeated for the subsequent layers from
the previous sampled nodes to construct a subgraph. Layer-wise
sampling [1, 5, 63] differs by choosing the nodes of the next layer
dependent on the sampled nodes in the current layer. This leads to
reduced variance compared to node-wise sampling. The third cat-
egory, subgraph-based sampling [8, 57, 58], first forms subgraphs
and then performs sampling within the fixed subgraphs resulting
in a restricted size of the neighborhood. Recently, learning-based
sampling strategies have emerged [56, 61]. They learn how to sam-
ple and adapt to the given input graph by training a separate model
which then predicts which nodes and edges should be included in
a sample or generates a sample. In terms of evaluation metrics like
accuracy, the methods prove to work well. However, they are time-
and memory-intensive due to the additional learning step.

Due to different objectives and assumptions, not all methods
work equally well for all graphs. In case pre-computations before
the actual sampling step are needed, like the forming of partitions
or calculation of importance scores, the corresponding method is
less resource efficient than random sampling. The same holds for
learning-based methods. An assumption many strategies hold is
that some nodes or edges contain more information and are more
beneficial for training than others.

3 ANALYSIS

3.1 Theoretical Analysis

The LLN states that if a sufficient number of independent obser-
vations has been collected, the mean of these observations will
converge around (weak LLN) or on the true value (strong LLN) of a
population, given that such a value exists [9]. An example of that is
rolling a dice: Rolling a dice many times, the mean will align on 3.5
which is the true mean of all dice sides. Stopping beforehand, the
mean of the throws will, with an increasing number of dice rolls,
align on 3.5.

We posit that the concept of the LLN can also be transferred to
graphs and GNNs. We base this on the following assumptions.

Assumption 1: We assume that a graph is a collection of observa-
tions of relationships. In a graph, nodes and edges are collected for
one or multiple domain areas. Just as any scientific experiment, this
collection is a sample of a larger population. We observe a fraction
of all the relationships that really exist in the target domain.

Assumption 2: We assume that relationships have a true mean.
As we observe relationships, we assume that sometimes observed

relationships can be wrong, rare, or misleading. As an example
from the domain of academic citation graphs: If a paper is about
Large Language Models, it is highly likely that recent applications
of the concept as well as the original paper are cited. However, any
other, related or unrelated, paper in the same or any other domain
could be cited as well. We therefore theorize that edges can be
thought of as being relevant and irrelevant, but most of the time it
is impossible to know beforehand. As we are primarily concerned
with observing relevant edges to find the true mean, we assume
that a graph can be reduced randomly as long as there are still
enough relevant edges to train on them.

Assumption 3: We assume that large-scale graphs have so many
observations that it is permissible to leave out observations. Ac-
cording to the LLN, more observations will lead to closer alignment
with the true mean. In a large-scale graph, we theorize that the
many observations already lead to a near perfect alignment with
the true mean. By removing observations, the alignment to the true
mean is less strong, however, we assume that the alignment is still
strong enough to approximate the true mean closely enough.

3.2 Empirical Analysis

In the following, we investigate the effect of random graph sparsi-
fication in combination with sampling. We explore how accuracy,
training, and inference time change when using smaller graphs.
Further, we analyze the tradeoff between graph size and accuracy
along with the question of what the boundaries of minimal graph
sizes or maximal graph reduction are in the case of GNN training.
We give an overview of our experimental setup in Figure 1.

3.2.1 Methodology. For our experiments, we use the ogbn-arxiv
and ogbn-products graph provided by the Open Graph Bench-
mark! (OGB) [21] as well as flickr, reddit, and yelp included
in the Deep Graph Library? (DGL) [49]. Details about the datasets
are summarized in Table 1. We use the full graph and delete x per-
cent of the nodes ranging from 20% to 80% percent of all nodes in
steps of 20%. Deleting edges mainly changes the graph structure
and graph characteristics. The result is a sparse graph containing
an unchanged number of nodes. On the contrary, deleting nodes
makes the graph truly smaller in terms of the total number of nodes
and edges which is our objective. By deleting nodes, we want to
verify the hypothesis that in large-scale graphs, single nodes are
not as important as graph characteristics such as the existence of
clusters and relations between nodes.

In addition to sparsifying the graph by randomly deleting nodes,
we perform mini-batch training with sampling. The sampling strate-
gies include Neighbor Sampling [18], VR-GCN [6], LABOR [1] and
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Table 1: Characteristics of the graph datasets (ND: node degree, CC: cluster coefficient)

Avg. | Avg. Feature Prediction
Name #Nodes #Edges NI% C Cg #Classes Size Task
flickr 89,250 899,756 10.1 | 0.033 7 500 category of image
ogbn-arxiv 169,343 1,166,243 13.7 | 0.226 40 128 paper subject area
reddit 232,965 | 114,615,892 | 492 | 0.579 50 602 community of post
yelp 716,847 | 13,954,819 | 20.5 | 0.092 100 300 category of business
ogbn-products | 2,449,029 | 61,859,140 | 50.5 | 0.411 47 100 category of product

Table 2: Sparsification and inference time in relation to the
end-to-end-time (in s)

Graph Perc. Spars. | Inf. | End2End
of nodes | Time | Time Time
. 80 25 26 319.6
flickr 20 0.8 1.0 357
. 80 0.9 3.9 280.8
ogbn-arxiv 20 0.9 2.4 424
. 80 235 | 467 | 51,5875
reddit 20 64 | 112 | 31752
80 181 | 387 | 88473
yelp 20 189 | 386 | 87812
oghn-products 80 384 | 1453 | 81225
20 350 | 1094 | 1,302.1

ShaDow [57]. We chose these four strategies because they all em-
ploy the same fanout parameter leading to a better and more fair
comparison. Additionally, we include one or more sampling strate-
gies each for the categories node-wise (Neighbor, VR-GCN), layer-
wise (LABOR) and subgraph-based sampling (ShaDow). The fanout
parameter is chosen from {10, 8, 6,4, 2, 1}.

A two-layer GCN as GNN architecture with a learning rate of
1e~3 and the Adam Optimizer [25] are used. Our loss function is
the Cross Entropy Loss for the node classification task. Evaluation
is done based on time and accuracy. We train each model for 20
epochs and repeat each experiment 3 times. The average result
along with the standard deviation are reported. This ensures ro-
bustness and reliability. Since the standard deviation is relatively
small, 3 repetitions are sufficient. All experiments are implemented
with DGL and PyTorch [38] and run on an Ubuntu Focal Fossa
(20.04) virtual machine with 32 vCPUs and 128 GB RAM.

3.2.2  Results. We give an overview of the time it takes to construct
the sparse graphs in relation to the overall training time with full-
neighbor sampling in Table 2. We can see that for large graphs, such
as ogbn-products, it only takes 0.005% to 0.027% of the end-to-end
time to construct the graph when using 80% and 20% of nodes,
respectively.

Sparsification: Figure 2 and Figure 3 give an overview of the
experimental results for two representative datasets, namely ogbn-
products and reddit. Overall, the accuracy remains relatively
stable with smaller subgraphs and across all datasets. Starting at
40% of nodes, the accuracy decreases around 0.02 when going from
40% to 20% of nodes (ogbn-products). Similar observations can be

made across all investigated sampling methods. Not only training
can take large amounts of time and needs to be optimized, but also
inference. In large-scale graphs and time-critical applications, it is
crucial to be able to make fast predictions. When looking at the
ogbn-products graph, inference time decreases by up to 75% when
regarding inference time for the full graph compared to reduced
by 60% of nodes. This also holds for the remaining graphs we
investigate (Table 2).

Sampling: Regarding sampling, the random Neighbor sampler
overall results in a good epoch time and accuracy. ShaDow sampling
can come with better accuracy in some scenarios. However, the
training times are longer across all graphs. With fewer nodes, VR-
GCN results in a similar performance than no sampling on the
ogbn-products graph. On the other hand, Neighbor, LABOR, and
ShaDow lead to a higher accuracy compared to no sampling. At
the same time, sampling-based training can be around 2.7 times
faster at a fanout of 10 which illustrates the effectiveness of our
method. Another observation is how the performance changes with
smaller fanouts for sampling-based training. Overall, the accuracy
does not show a significant decrease when reducing the fanout to
6 across all methods and datasets. Some samplers, such as VR-GCN
and ShaDow, show satisfying performance even with a fanout of
2 on sparse graphs. Thus, a fanout between 6 and 2 can be used
while maintaining accuracy and decreasing training time.

Sparsification and Sampling combined: An important finding
is that both methods, graph sparsification and sampling, combined
are able to maintain the accuracy while reducing training time
significantly. Combining both outperforms using only one method
standalone in regards to epoch time. However, there is a trade-off
between the sparsity of the graph, the choice of sampling method,
and the value of the fanout parameter. We identify a rule holding
true for our experiments determining the degree of sparsification
in combination with the value of the fanout parameter. Best results
can be achieved with around 40% of the original graph size. This
size is sufficient to only experience a marginal drop in accuracy
(if any). One can also use a subgraph down to 20% of the original
size if a drop in terms of accuracy around 0.01 is not critical for the
application. Regardless of the chosen sampling strategy, a fanout
of 4 is a good trade-off between a stable accuracy and a decrease in
epoch time. We refer to the rule of using 40% of the graph size and
a fanout of 4 as the 40/4-rule.
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Figure 3: Results for the reddit graph, different samplers, fanouts, and sparsification levels

4 OPEN CHALLENGES
4.1 Graph sparsification and sampling

The aim of all investigated methods is to reduce the size of the graph
for faster execution of a given graph algorithm or GNN training.
Due to different assumptions and objectives, not every method is
beneficial for all scenarios. While some methods aim to preserve
certain graph characteristics, others concentrate on the node or
edge features. Besides that, an overhead might be introduced due
to pre-processing steps with only little improvement in terms of

performance. With more and more methods available in the past
years, the choice of method becomes inherently harder. The ques-
tion arises in which cases these specialized methods are needed
to obtain satisfying results on large-scale graphs. In which cases
might a random selection be sufficient? If using sparsification and
sampling methods, how small should the graph be made and which
sampling parameter should be chosen? In our experiments, we
show that large-scale graphs can be reduced by up to 40% of the
original size without a significant decrease in accuracy. Combined



with sampling, it is even more effective leading to a better accuracy
than when using the complete graph.

4.2 Applications

By reducing training time in both epoch time as well as in the
absolute training time, the process of training GNNs and evaluat-
ing their performance in relation to their application is simplified
and streamlined. Graphs and GNNs have multiple application do-
mains including spam detection [45, 47], fraud detection [34] or
recommender systems [14, 43, 53].

In recommender systems, one challenge that persists, as reported
in multiple surveys [14, 43, 53], is scalability. With many graphs
being extremely large in size, most current approaches are not
scalable beyond certain points. By using sampling, the scalability
of GNNs running on large-scale graphs can be improved. However,
some graphs remain too large to be used efficiently. The approach
we present in this study, to combine sampling with graph reduction,
shows that accuracy can be kept at acceptable levels while reducing
training time significantly. For recommender systems in large-scale
settings, this approach can help to regularly re-train the GNNs
and to deliver results more quickly. Further, selecting nodes and
edges at random does not introduce (pre-)computation overhead
while maintaining accuracy. This also holds for other time-critical
applications, such as fraud detection [34] or spam detection [45,
47], where fast predictions are crucial and the GNN needs to be
frequently re-trained.

4.3 Bias

Bias is the phenomenon that different steps in a (data) task might
have inherent errors. These errors lead to so-called biased results:
the results vary around the actual values one wants to observe
and measure. Bias has many different forms that can be strongly
or weakly expressed depending on a given experimental design.
Hence, it "should be considered primarily a function of study design
and execution” [44].

For the method we propose, we have purposefully not investi-
gated bias as we are primarily concerned with designing an easily
usable and scalable method to make gains in the fields of training,
inference, and applications. We assume that, by applying our ran-
dom method, common bias on the data and sample level are not
introduced. If a dataset is reduced at random, existing bias within
that dataset is also reduced at random in alignment with how often
a specific bias exists in the dataset. Hence, for bias at data level, we
assume that neither additional bias is introduced nor that existing
bias is reduced. For instance, the number of nodes corresponding
to a specific attribute is reduced to the same degree as the number
of nodes of other attributes when reducing a graph at random. This
also translates to the classes which are predicted where a class
might be underrepresented or overrepresented.

Future research directions could look into the areas of data se-
lection biases and model biases that might arise by having a signifi-
cantly smaller dataset. In case one wants to mitigate bias introduced
by random deletion of nodes, one could train a model on several
graphs and combine them when calculating inference. For instance,
one could form n different random subgraphs with different seeds
containing x percent of the original nodes. On each subgraph, a

model is trained individually. After training, the models are com-
bined to predict on a graph. This would still be more efficient in
terms of time and memory, and one could easily distribute the train-
ing process on multiple machines which could lead to a fairer and
more accurate model since different nodes and edges are included
in each subgraph.

4.4 Mining New Graph Datasets

With the analysis of the LLN and our empirical evaluation, the
question arises what kind of data is needed for specific prediction
tasks. This can be transferred to the mining of new graph datasets.
Does one need to collect billions of datapoints, or is a certain amount
of data sufficient for the subsequent graph learning and prediction
tasks? Since mining new datapoints is resource-intensive, a rough
approximation could help to reduce costs. Our experiments could
help to give an estimation of how many datapoints are needed
to still be able to train and predict with a GNN. In other words,
sampling could already be performed while mining the dataset. To
ensure a certain number of random datapoints are picked, one could
use a method called Reservoir Sampling [48]. This method is used
to randomly choose n samples from an unknown number of data
samples or an extremely large number of data samples N. The data
is streamed, and a reservoir is filled with decreasing probability
for the datapoints to be included. Elements in the reservoir have
a probability of 1/n to stay in the reservoir and not be replaced
with a new one. This ensures n random samples are picked out
of N candidate data points. An advantage of this streaming-based
method is that it is very memory efficient.

4.5 Future Research Directions

Several future research directions arise, for instance, a broader
evaluation of the 40/4-rule, an evaluation in regards to other graph
reduction methods combined with sampling, the exploration of
what a reasonable size for a graph with a given application task
is, as well as graph reduction methods tailored to sampling or vice
versa.

The question arises what a reasonable size of a graph for a given
task is. Is the graph too large, and could some nodes and edges be
removed? Or is the graph too small and more information is needed
to make meaningful predictions? In our experiments, around 40%
of nodes and sampling with a fanout of 4 usually leads to the best
results (40/4-rule). However, more investigation needs to be done
in the direction of required graph size in relation to the underlying
prediction task. In this manner, researchers could better assess how
many data points need to be mined to solve a given task.

We have shown that the random graph reduction method and
also random sampling usually produce a sufficient accuracy while
minimizing training and inference time. Further, we assume that no
additional bias is introduced. There might be scenarios where more
specialized methods are needed and some kind of bias is desired or
should actively be decreased. We identify a novel research direction,
namely the design of a graph reduction method in combination
with a sampling method. This could further improve the results for
certain application tasks.



5 RELATED WORK

Leskovec and Faloutsos [27] investigate several graph reduction
methods for graph processing algorithms, such as shortest paths or
centrality. The authors explore which method should be chosen and
what an appropriate subgraph size is. In addition, they answer the
question based on which metrics these methods should be evaluated
on. We also explore graph reduction and what a sufficient subgraph
size is. Our work differs by focusing on GNN training instead of
graph processing. Further, we combine two methods reducing the
graph size, namely graph sparsification and sampling for GNN
training.

Another related work [32] centers on GNN sampling. Various
strategies are analyzed and categorized into node-wise, layer-wise,
subgraph-based, and heterogeneous strategies. The authors com-
pare within categories as well as across categories to emphasize the
strengths and weaknesses of the methods. Serafini et al. [42] survey
sampling strategies and GNN systems using sampling. Comparison
is done in regards to whole-graph training and based on a fixed
fanout parameter. In contrast to the two papers above, we not only
use sampling, but reduce the graph and use only a subset of nodes
and edges as input for GNN training and sampling. Another differ-
ence are the varying fanouts from 10 to 1 we use to explore how
small the parameter can be set while maintaining a satisfactory
accuracy.

Graph reduction before GNN training is explored by Wei et al.
[51]. Four reduction methods and multiple GNN architectures are
evaluated. We differ by not only regarding graph reduction, but
also sampling-based mini-batch training. Liu et al. [33] give an
overview of GNN acceleration techniques including sampling and
sparsification. They highlight different methods belonging to these
categories and compare them. Our work analyzes the effective-
ness of combining both graph sparsification and sampling while
assessing which parameters should be chosen for both.

In our work, we explore graph sparsification. More specifically,
random sparsification combined with sampling during GNN train-
ing. However, there are other methods to reduce the size of a graph,
such as graph coarsening and graph condensation.

When performing graph coarsening, certain nodes are grouped
into clusters and aggregated based on given criteria. A criterion
could be proximity or similarity. The objective of graph coarsening
is to reduce the graph size while preserving the original structure
and graph characteristics [2]. Local Variation (LV) [36] can be used
to calculate pairwise scores to decide which nodes to group. SCAL
uses the coarsened graph by LV to train and predict with a GNN
[22]. Another method grouping nodes based on a score is CON-
VMATCH [10]. Here, nodes with similar characteristics in relation
to the GCN convolution are merged. With the help of GNNs, Cai et
al. [2] learn how to reduce the number of nodes by merging certain
clusters. Due to the learning step, this method is able to adapt to
various graph types and reduction ratios. The Macro Graph Neural
Network (MacGNN) architecture has been developed to be used
in combination with MAcro Recommendation Graphs (MAG) [4]
for recommender systems. Nodes with similar behavior patterns
are grouped into macro nodes to reduce the graph from billions to
hundreds of nodes. This method also ensures sampling bias is mini-
mized by sampling large enough proportions of each group. Again,

all methods employ various objectives and work well in certain
scenarios. However, due to underlying assumptions, computation
steps, and application domains, they might not be optimal for all
use cases which makes it hard to choose which one to pick.

In contrast to sparsification and coarsening, graph condensation
first distills knowledge from a graph dataset and then utilizes this
to construct a smaller, synthetic graph. The idea was introduced by
Jin et al. [23] and is inspired by dataset distillation [50] and dataset
condensation [60]. The gradients of the original and the synthetic
graph are matched during each training step, and an objective
function is minimized. To enhance the optimization process, CTRL
[59] adds the magnitude distance in the optimization process.

As these methods have some inefficiencies due to the optimiza-
tion step, EXGCN [12] selects and focuses on important nodes dur-
ing the training process instead of all nodes. The optimization step
is very resource intensive. Therefore, KIDD [54] employs Kernel
Ridge Regression (KRR) for a simplified optimization objective with
a single-level problem. A related approach is SFGC [62] which also
makes use of KRR. While the above methods output a condensed
graph, SFGC outputs graph-free data like the node features but not
the graph structure. The Graph-Skeleton model [3] classifies nodes
of web graphs into target nodes and background nodes. Background
nodes are fetched based on connectivity and feature correlation to
support the target nodes. They are condensed, and a skeleton graph
is created. The methods have in common that either a hand-crafted
optimization objective is minimized or a handcrafted importance
score is calculated. The underlying assumption is that some nodes
are more important than other nodes or that some nodes can be
grouped into super-nodes without losing too much information.

6 CONCLUSIONS

This work investigates the boundaries of minimal graph sizes or
maximal graph reduction in the case of GNN training. We pro-
pose combining random graph sparsification with GNN sampling,
demonstrating that both methods combined are able to maintain
the accuracy while reducing training time significantly. The com-
bination of both methods outperforms the use of either method
alone in terms of epoch time and accuracy. We identify a trade-off
between the degree of graph sparsification, the choice of sampling
method, and the fanout parameter. Across all graphs, reducing to
around 40% of the original size and a fanout parameter of 4 yields
the best results in terms of training time reduction and maintaining
a sufficient accuracy. Further, we assume that randomly reducing
the graph size does not introduce additional bias on the input graph.
Inference time decreases by up to 75% when reducing the graph by
60%, enhancing scalability for applications, such as recommender
systems and fraud detection, where GNNs frequently need to be
re-trained and predictions can be time-critical.
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