
HyperFedNet: Communication-Efficient Personalized Federated
Learning Via Hypernetwork

Xingyun Chen
Qingdao University

2021020697@qdu.edu.cn

Yan Huang
Kennesaw State University
yhuang24@kennesaw.edu

Zhenzhen Xie
Shandong University
xiezz21@sdu.edu.cn

Junjie Pang
Qingdao University
pangjj@qdu.edu.cn

ABSTRACT
In response to the challenges posed by communication cost and non-
independent and identically distributed (non-IID) data in Federated
Learning, we introduce HyperFedNet (HFN), a novel architecture
that incorporates hypernetwork to revolutionize parameter aggre-
gation and transmission in FL. Traditional FL approaches, charac-
terized by the transmission of extensive parameters, not only incur
significant communication overhead but also present vulnerabilities
to privacy breaches through gradient analysis. HFN addresses these
issues by transmitting a concise set of hypernetwork parameters,
thereby reducing communication costs and enhancing privacy pro-
tection. Upon deployment, the HFN algorithm enables the dynamic
generation of parameters for the basic layer of the FL main network,
utilizing local database features quantified by embedding vectors
as input. Through extensive experimentation, HFN demonstrates
superior performance in reducing communication overhead and im-
proving model accuracy compared to conventional FL methods. By
integrating the HFN algorithm into the FL framework, HFN offers a
solution to the challenges of communication cost and non-IID data.

VLDBWorkshop Reference Format:
Xingyun Chen, Yan Huang, Zhenzhen Xie, and Junjie Pang. HyperFedNet:
Communication-Efficient Personalized Federated Learning Via
Hypernetwork. VLDB 2024 Workshop: 3rd International Workshop on
Large-Scale Graph Data Analytics (LSGDA 2024).

1 INTRODUCTION
In recent years, there has been a growing emphasis on data se-
curity due to increased awareness of privacy protection and the
evolution of laws. However, in the era of big data, the continuous
generation of diverse data by electronic devices poses challenges.
This data contains personal privacy information and is unsuitable
for transmission to central servers for data mining or machine
learning purposes. For example, input prediction technology has
significantly enhanced the accuracy of word suggestions, making
typing more convenient and enjoyable. While training neural net-
works requires substantial data support, many owners of private

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.
Junjie Pang is the corresponding author.

data are reluctant to share it. Conversely, the number of personal
devices capable of processing data is increasing. In this context,
Federated Learning (FL) has emerged as a solution to address this
dilemma. FL is a novel distributed technique that enables multi-
ple parties to collaborate in training neural network models by
transmitting only the parameters of the training network without
sharing the dataset. This collaborative approach allows users to
achieve common goals and benefit from the learned models while
safeguarding their privacy. However, the development of FL faces
challenges related to communication cost and data heterogeneity.
As device computing power increases, the complexity of model
structures grows, necessitating the transmission of hundreds of
thousands or even millions of parameters between users’ devices
and the server per round. Consequently, the communication traffic
overhead for users becomes substantial. This issue often leads to
devices participating only when connected to WiFi, limiting the
number of available devices and resulting in suboptimal model
learning for FL tasks. Additionally, data heterogeneity arises from
variations in user behavior, domain differences, and the disparity in
data volume between individual users and institutional users. Data
heterogeneity poses a significant obstacle that hinders the improve-
ment of model accuracy and can even impede model convergence.
Effectively conserving communication resources and achieving
personalized federated learning (pFL) are crucial yet highly chal-
lenging aspects in the field of FL. Existing FL methods have not yet
addressed these two challenges simultaneously.

Our work introduces a novel algorithm called HyperFedNet
(HFN) to achieve communication efficiency and pFL. First, different
embedding vectors are used to represent the convolutional kernel
features in the convolutional neural networks of different users,
indirectly indicating the data characteristics possessed by the users.
Second, a hypernetwork, essentially a small neural network, is used
to parameterize the main network of FL. This allows for commu-
nication using the more compact parameters of the hypernetwork
instead of the main network’s parameters. The hypernetwork acts
as a coordinate map of a low-dimensional manifold in the em-
bedding vector space, where each unique user model structural
parameter is constrained and parameterized by the embedding
vector[15]. Finally, the personalized layer of the main network is
fine-tuned to ensure that the basic layer parameters generated by
the hypernetwork are better aligned with the personalized layer
parameters.

Our contribution are listed as follows:

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


(1) We propose a pFL method that reduces communication
overhead and improves accuracy compared to existing algo-
rithms, offering a tailored balance between model accuracy
and communication needs.

(2) We introduce an innovative parameter transmission strat-
egy in FL, utilizing aggregation of small model parameters,
which reduces transmission costs and improves data secu-
rity.

(3) Our extensive experiments demonstrate the proposed HFN
method’s superiority over current FL algorithms in commu-
nication efficiency, convergence speed, and personalization
accuracy.

(4) We highlight the integration compatibility of the HFN al-
gorithm with existing algorithms, showing improved per-
formance and potential to enhance current FL approaches.

In summary, our work contributes by proposing a pFL method
that reduces communication volume and improves security through
a novel parameter transmission idea. Through extensive experi-
ments, the paper demonstrates the effectiveness of the proposed
method and its potential for integration with other algorithms.

The paper is organized as follows: Section II presents some work
done by other researchers in related areas. Section III adds some
necessary background knowledge and problem definition. In Sec-
tion IV, the HFN method is formulated. The experiments in Section
V show the advancement of HFN and the effect of combining it
with other algorithms. In Section VI we summarize our work.

2 RELATEDWORK
2.1 Personalized Federated Learning
Researchers have proposed many pFL methods. Data augmentation
is a technique that transforms or expands the original data to gen-
erate new training samples to balance data heterogeneity. In order
to balance the differences between clients, some researchers have
proposed the use of data augmentation[3]. In [1], only the base
layer is aggregated while retaining the personalized layer. However,
this approach requires the participation of all users in every round,
which is not feasible in a federated learning environment. [4, 9]
finds an initial shared model based on migration learning, knowl-
edge distillation, and meta-learning, respectively, and based on the
initial model, the users fine-tune the model locally to obtain their
own personalized model. In addition, [12] fixes the personalization
layer during training, and after convergence, the local data is used
to fine-tune the model to obtain a localized model.

The use of data augmentation, meta-learning, and other tech-
niques in FL introduces the risk of data leakage, as it involves some
form of data sharing, which contradicts the original purpose of
FL. In contrast, the HFN adheres to the fundamental principles
of FL without exchanging any data. A single global model is not
well-suited for highly non-independent and homogeneously dis-
tributed data scenarios. Training the network using the model de-
coupling approach still subjectively transmits all feature knowledge
to the user without targeting personalized knowledge for the main
network. As a result, users are unable to obtain their own unique
knowledge, leading to slow convergence, high communication over-
head, and poor modeling results. The HFN algorithm, on the other

hand, generates different knowledge for different users, enhancing
convergence speed, and improving the model’s effectiveness.

2.2 Efficient Communication in Federated
Learning

FL is a distributed machine learning approach in which model
parameters and updates need to be exchanged frequently between
users for collaborative model training. The high communication
cost not only has an impact on the overall performance, but also
poses a challenge to devices with limited bandwidth and energy,
thus constraining the development of FL[10]. A common approach
is to compress and encode model parameters using compression
techniques to reduce the bandwidth required for transmission[2, 14].
On the other hand, some work focuses on reducing the frequency of
communication. For example, researchers have proposed strategies
to increase the number of local computation epochs[11]. However,
determining the optimal number of local computation epochs is
a key issue, and to address this issue. The study by Reisizadeh et
al.[13] introduces the periodic averaging method and quantizes its
updates based on the quantizer’s accuracy before uploading to the
parameter server, thereby lowering communication overhead. Some
academics combine methods from other fields, He et al.[6] proposed
to utilize knowledge migration instead of traditional transmission
transfer.

Compressing and encoding model parameters can introduce
noise and lead to information distortion, potentially resulting in
reduced model performance. Additionally, the compression and
decompression processes between users and the server incur com-
putational overhead. This overhead becomes particularly significant
for large models, which may outweigh the benefits gained from
compression. Moreover, when employing optimization methods
that increase local computing rounds, the heterogeneity among
users, including differences in computing capabilities and data dis-
tribution, can pose challenges. Adding more local computational
epochs may further amplify this variability, leading to poorer train-
ing performance for certain users. Quantization operations, similar
to model compression, can result in information loss. Representing
the model with low-precision values may not accurately capture
the intricacies and complexity of the model, necessitating more
training iterations to compensate for the loss of detail. Moreover,
when areas such as knowledge transfer are combined with FL, trans-
mitting only feature maps and related logs without transmitting
network parameters can lead to information loss. Consequently,
the server can only use local information for training and may not
be able to acquire a complete understanding of the model.

3 PRELIMINARIES
3.1 Federated Learning
Assume that in a FL scenario, there is a FL server and 𝐾 users,
where user 𝑘 (𝑘 ∈ {1, 2, . . . , 𝐾}) has a personal data set D𝑘 . Before
training, the FL server will initialize a global model to solve the
objective function. In each iteration cycle, the server randomly
selects some users to participate in training and delivers the global
model parameters. After the selected user receives the global model,
it is set as a local model and trained using its local data. After
training, the locally updated model parameters are transmitted

2



back to the server. The server uses an aggregation algorithm to
aggregate the parameters uploaded by the user, generates a new
global model, and performs the next round of iterative training
until the preset accuracy is reached or the model converges. During
the FL training process, a set of parameters𝑤 is found for the global
model to minimize the overall loss. The objective function is defined
as:

min
𝑤

[
1
𝐾

𝐾∑︁
𝑘=1

𝑓𝑘 (𝑤)
]

(1)

Among them, 𝑓𝑘 represents the loss function of user 𝑘 , which is
defined as:

𝑓𝑘 (𝑤) = E(𝑥,𝑦)∼𝑝𝑘L (𝑤 ; (𝑥,𝑦)) (2)
where 𝑝𝑘 represents the probability distribution of data set D𝑘

generated by user 𝑘 , and L (𝑤 ; (𝑥,𝑦)) represents the prediction
loss function.

3.2 HyperNetwork
Hypernetwork is a special type of neural network structure, usu-
ally containing one or more hidden and output layers, which has
dynamically adjustable parameters. Hypernetwork can be used to
generate parameters of main networks, weight, or architectures for
other neural networks[5]. If a hypernetwork is used, the parameters
of the main network will no longer be learned by the main network
itself, but the parameters will be set by receiving the output of
the hypernetwork. The hypernetwork transforms this input into
parameters for other neural networks through a complex internal
mechanism. These generated parameters can be seen as a kind of
search space for exploring the possibilities of different network
architectures or weights. The generated parameters are used to con-
struct a specific neural network architecture. This process can be
translated into an actual network architecture by some predefined
rules or algorithms, e.g., using generative adversarial networks or
by hypernetwork tuning. The generated network architecture is
used for forward and backpropagation of the training data.

3.3 Problem Definition
The pFL allows each user to build his or her own personalized
model to better adapt to the characteristics of local data. pFL can
better improve the performance and adaptability of the model.

The personalization algorithm HFN we designed can generate 𝐾
sets of parameters based on its own characteristic input, and splice
it with a locally retained personalization layer, so that each user
can learn parameters 𝑤𝑘 that adapt to the local data distribution
𝑝𝑘 to achieve better forecasting. That is, the goal of HFN can be
expressed as:

𝑤∗ = argmin
𝑤

[
1
𝐾

𝐾∑︁
𝑘=1

𝑓𝑘 (𝑤𝑘 )
]

(3)

Where 𝑤 = {𝑤1, ...,𝑤𝐾 } is the personalized parameter set of all
users.𝑤∗ is the current optimal solution obtained through continu-
ous iterative learning as FL progresses.

In order to solve𝑤∗ for personalization while achieving privacy
enhancement and communication efficiency, our work expects to
explore a new FL framework in which each user is able to complete
the training by simply uploading a summary of the users’ local

model. Therefore, the pFL problem of our work turns to how to
establish a way to automatically generate model summaries that
adaptively complete the training of FL under external conditions.

4 METHDOLOGY
4.1 Framework Overview
We propose the HFN algorithm with the architecture shown in
Fig.1. The model running on the user consists of two parts, one
for the hypernetwork and the other for the FL main network. The
hypernetwork takes the user’s local embedding vector as input and
outputs parameters to the basic layer of the main network based
on the characteristics of representation of embedding vectors. In
the main network, it accepts the parameters and will perform the
prediction training task locally. As input embedding vectors 𝑣 to
the hypernetwork, they correspond to different filters, which are
used to characterize some potential features of the filters, essen-
tially reacting to the characteristics of different user databases, in
order to help the hypernetwork to accomplish the output localiza-
tion, as well as to better cope with non-iid data. These embedding
vectors 𝑣 are fed as inputs into the hypernetwork HN to generate
the basic layer parameters𝑤𝜃 of the main network. In the setting,
each user’s classification layer is retained as a personalization layer
in the respective main network model, and the retention of these
layers contributes to personalization. The basic layer parameter𝑤𝜃
is combined with the personalization layer parameter𝑤𝛽 to consist
of the complete main network parameter𝑤 . When performing for-
ward propagation, the corresponding prediction 𝑦𝑖 is made based
on the input 𝑥𝑖 . If it is in the training phase, a local update is also
required, and the update of the hypernetwork in the backpropaga-
tion is based on the gradient of the main network. In the parameter
exchange phase, the HFN architecture communicates by transmit-
ting the hypernetwork parameters 𝜑 . This small and sophisticated
network, through aggregation, can communicate its own learned
knowledge and ability to generate parameters with other users, and
continuously improve the ability to refine the output main network
parameters.

4.2 pFL Based on Hypernetwork
Directly transmitting the parameters of each filter in a CNN leads
to heavy communication overhead. We attempt to adopt an ap-
proach that takes advantage of the powerful generalization and
mapping capabilities of the hypernetwork to generate a large num-
ber of parameters in the convolutional layer of the main network by
mapping them through the hypernetwork. First, the main network
parameter𝑤 is decomposed into the basic layer parameter, i.e., the
convolutional layer parameter𝑤𝜃 , and the personalized layer pa-
rameter𝑤𝛽 . Then the process of communicating the aggregate of
the basic layer parameter𝑤𝜃 is transformed into a learning problem
by introducing a hypernetwork, which allows the hypernetwork
parameter 𝜑 with fewer parameters to be aggregated instead of
the main network, thus reducing the communication overhead in
FL. At the same time, we keep the personalized layer parameter
𝑤𝛽 locally, and each user can personalize the training and adjust-
ment according to his/her own data characteristics. This helps to
improve the adaptability and performance of the model to better
fit the characteristics of local data.

3



Figure 1: HFN Framework: Small red networks are hypernetwork and large colored ones are main networks. During parameter
aggregation, only the hypernetwork parameters are aggregated.

Figure 2: Hypernetwork Model Structure.

The convolutional layer in a convolutional neural network is
composed of many filters. Every filter extracts a specific texture[16].
Each filter for each user needs to have a embedding vector 𝑣 𝑗

𝑘
to rep-

resent the potential features of the filter. The purpose of quantizing
the convolutional layer filters by embedding vector is to extract po-
tential features. The embedding vector will help the hypernetwork
to specify what kind of texture needs to be detected by the filter
parameters that will be generated. The learnable embedding vector
is denoted by 𝑣 𝑗

𝑘
. Where 𝑘 denotes the user serial number and 𝑗

denotes the serial number of filters in the convolutional layer. The
size of the embedding vector can be flexibly adjusted, A larger em-
bedding vector can capture more feature information, and provide
richer input information to the hypernetwork.

For convenience, we use ℎ(𝑣 𝑗
𝑘
;𝜑) to denote the hypernetwork,

and 𝜑 to represent the hypernetwork parameters, with different 𝑣 𝑗
𝑘

inputs, the hypernetwork ℎ(𝑣 𝑗
𝑘
;𝜑) can output the corresponding

parameters. Each filter in the main network includes 𝑁𝑖𝑛 × 𝑁𝑜𝑢𝑡
kernels, and the size of each kernel is 𝑓𝑠𝑖𝑧𝑒 × 𝑓𝑠𝑖𝑧𝑒 , which are
mainly responsible for extracting various tiny features of the im-
age for feature learning. The parameters of the filters use the
𝐹 𝑗 ∈ R𝑁in 𝑓size ×𝑁out 𝑓size to indicate that, for each 𝐹 𝑗 , a hypernetwork
is used to receive an embedding 𝑣 𝑗 ∈ R𝑁𝑣 and to predict the outputs
𝐹 𝑗 , where 𝑁𝑣 is the size of the embedding vector. The hypernetwork
we use is a two-layer linear network. The hypernetwork model flow
is shown schematically in Fig.2, where the embedding vector 𝑣 𝑗

𝑘
is

linearly mapped as input to 𝑁𝑖𝑛 distinct matrices𝑊𝑖 ∈ R𝑑×𝑁𝑣 , 𝑖 =
1, ..., 𝑁𝑖𝑛 and the bias vector 𝐵𝑖 ∈ R𝑑 , 𝑖 = 1, ..., 𝑁𝑖𝑛 , where 𝑑 is the
size of the hidden layer in the hypernetwork. The input size of the
second layer is 𝑑 , using a matrix𝑊𝑜𝑢𝑡 ∈ R𝑓𝑠𝑖𝑧𝑒×𝑁𝑜𝑢𝑡 𝑓𝑠𝑖𝑧𝑒×𝑑 and a

bias matrix 𝐵𝑜𝑢𝑡 ∈ R𝑓𝑠𝑖𝑧𝑒×𝑁𝑜𝑢𝑡 𝑓𝑠𝑖𝑧𝑒 processed. Finally, the output is
spliced into the parameters of a basic filter in a certain order.

An embedding vector 𝑣 𝑗
𝑘
represents a basic filter 𝐹 𝑗 in the main

network. The dimensions of the filters used for convolution op-
erations in different convolution groups may be different, but are
generally integer multiples of the basic filter. For example, use an
embedding vector 𝑣 𝑗

𝑘
to represent the basic filter 𝐹 𝑗 of 16× 16. If we

want to represent 𝐹32×64, we can concatenate the hypernetwork
outputs corresponding to multiple embedding vectors as parame-
ters of a single filter. The following shows a 32 × 64 dimensional
filter stitched together from 8 basic dimensions 16 × 16.

𝐹32×64 =

(
𝐹1 𝐹2 𝐹3 𝐹4
𝐹5 𝐹6 𝐹7 𝐹8

)
Generating all the parameters of the convolutional layer needed

for a user 𝑘 requires all the embedding vector {𝑣 𝑗
𝑘
| 𝑗 = 1, 2, ...}, and

for convenience, 𝑣𝑘 is used to represent all the feature embeddings
of user 𝑘 . Based on the above settings, the pFL objective of the HFN
is adjusted to:

𝑣∗, 𝜑∗,𝑤∗
𝛽
= arg min

𝑣,𝜑,𝑤𝛽

[
1
K

K∑︁
k=1

fk (h(vk;𝜑); w𝛽k )
]

(4)

where 𝑣 = {𝑣1, . . . , 𝑣𝐾 , } is the set of embedding vectors that can
be learned by all users, and 𝑤𝛽 = {𝑤𝛽1 , . . . ,𝑤𝛽𝐾 } is the set of
parameters of the personalization layer for all users. Instead of
the traditional main network parameter𝑤 , what is aggregated in
FL’s server is the hypernetwork parameter 𝜑 , so the gradient ▽𝑤
of the main network needs to be further back-propagated to the
hypernetwork, and the hypernetwork 𝜑 is updated based on ▽𝑤
with𝜑𝑡+1 = 𝜑𝑡−𝜆▽𝜑𝑡 (𝜆 is the learning rate), thus the hypernetwork
can perform end-to-end learning.

5 EXPERIMENTS
5.1 Experiment Setup
Datasets and model:We used four common datasets: MNIST[8],
FMNIST[17], CIFAR-10 and CIFAR-100[7]. We divided each dataset
into 80% training set and 20% test set and divided them into 100

4



Table 1: Convolutional Neural Network Settings

Group Name MNIST FMNIST CIFAR10 CIFAR100
conv1

[
3 × 3, 16

] [
3 × 3, 16

] [
3 × 3, 16

] [
3 × 3, 32

]
conv2

[
3 × 3, 16
3 × 3, 16

] [
3 × 3, 16
3 × 3, 16

]
× 6

[
3 × 3, 16
3 × 3, 16

]
× 6

[
3 × 3, 32
3 × 3, 32

]
× 6

conv3
[
3 × 3, 32
3 × 3, 32

] [
3 × 3, 32
3 × 3, 32

]
× 6

[
3 × 3, 32
3 × 3, 32

]
× 6

[
3 × 3, 64
3 × 3, 64

]
× 6

conv4
[
3 × 3, 64
3 × 3, 64

] [
3 × 3, 64
3 × 3, 64

]
× 6

[
3 × 3, 64
3 × 3, 64

]
× 6

[
3 × 3, 128
3 × 3, 128

]
× 6

users. The test set and the training set on each user have the same
data distribution, and the training set does not overlap with the test
set data. The dirichlet distribution 𝐷𝑖𝑟 (0.5) is used to construct the
non-iid case.

We used ResNet as the main network for experiments to validate
the effect of the parameters generated by the hypernetwork. The
architectures of the CNNs dealing with different datasets are shown
in Table 1. Convolution, batch normalization and ReLU activation
are performed in the residual block in this order. The dimensions of
the kernel are all 3 × 3. After convolution, an appropriate average
pooling layer is used for dimensionality reduction. Finally, a fully
connected classification layer is used. In the privacy experiment,
we use the LeNet model.

Baselines We compared HFN with the state-of-the-art FL al-
gorithm. The unique hyperparameters of each algorithm in the
experiment were tested by referring to the default configuration
of the original paper. We implemented the following benchmark
algorithms in the experiment: 1) Centre: Centralize all data for
training, imitating the traditional way of uploading data to the data
center. 2) FedAvg: This is the most important algorithm for FL, and
it is effective in various scenarios. 3) Local: There is no parameter
exchange, but each user only uses his or her own data for training
locally. 4) FedBabu: The algorithm for updating and aggregating
the model body needs fine-tuning after convergence. 5) FedProx:
by adding proximal terms so that the user model does not deviate
from the global model in order to deal with non-iid scenarios, we
enumerated its unique hyperparameters 𝜇 = {1, 0.1, 0.01} and chose
the optimal results for each experiment. 6) FedGen: Improve FL
accuracy by training a feature generator. 7) FedDyn: Propose a dy-
namic regularizer for each user in each round to promote consistent
solutions for local and global users. 8) pFedSim: Personalized algo-
rithm based on model similarity. 9) FedPer: A method of retaining
the personalization layer locally, which can combat the adverse
effects of statistical heterogeneity. 10) FedBN: Solve the problem of
FL data heterogeneity by adding a batch normalization layer to the
local model. 11) FedRep: Train the classifier and feature extractor
in sequence, and only aggregate the feature extractor. 12) pFedla:
Deploys a hypernetwork on the server side for each user to give the
user hierarchical aggregation weights. 13) FedFomo: The optimal
weighting of a customer is given to aggregate the model by calcu-
lating how much the customer can benefit from other customers’
models.

Since HFN and some of the algorithms require a fine-tuning step,
to be fair, we add 4 local epochs of fine-tuning to all algorithms to
ensure fairness and to evaluate their personalized accuracy.

Settings The embedding vector size of HFN can be adjusted. In
this general experiment, it is fixed, 64 when processing MNIST, and
128 for the rest. The experiment uses SGD as the optimizer, uses
Nesterov Momentum, momentum is 0.9, weight decay is 5e-4, local
epoch and fine-tuning epoch are 4, the batch size is set to 128, the
total number of users is 100, the joining rate is 0.25, MNIST and
FMNIST global communication round is 90, CIFAR10 and CIFAR100
are 150. We run multiple experiments on the learning rates of all the
algorithms and select the best results in each experiment, including
multi-step learning rates decaying from 0.1 and fixed learning rates
of 0.1, 0.01, and 0.001.

5.2 Hypernetwork for Parameter Generation
In this experiment, there are a total of 20 users, each group of 4
users, with user numbers 0-3 as the first group, and so on, a total of
5 groups, and the users in the group have similar data distribution.
Each user has 2 classes (MNIST, FMNIST, CIFAR10 dataset) or 10
classes (CIFAR100 dataset). We then evaluate the similarity of the
generated parameters through cosine similarity. As shown in Fig.3,
the images show the similarity of the hypernetwork generation
parameters under the MNIST, FMNIST, CIFAR10 and CIFAR100 data
sets. The horizontal and vertical coordinates in the figure are user
numbers. The lighter the color of the grid, the higher the similarity
of the user models corresponding to the x-axis and y-axis, and a
similarity value of 1 means that the user models are identical. We
use the blue border of 4×4 to highlight the similarity corresponding
to the user models of the same group. It can be clearly seen from
the figure that the color corresponding to the model within the
group is significantly lighter, i.e., the similarity is higher, indicating
that the user basic layer parameters within the group with similar
data distribution have a higher similarity than the parameters in
other groups.

Users based on similar data distribution should have similarity
in their embedding vector matrices. The parameters generated by
the hypernetwork will be subject to similar conditions. This means
that the hypernetwork will tend to generate parameters that adapt
to similar data distributions, thus making the main network param-
eters generated by different users similar. However, it should be
noted that even if users within a group have similar data distribu-
tion, the data content of each user is not completely consistent. The
parameters generated by the hypernetwork for different users may
vary to some extent. However, these differences should be within a
certain range and maintain overall similarity.

This experiment shows that the hypernetwork we use can gener-
ate the basic layer parameters suitable for users with different data

5



Figure 3: Similarity of main network parameters generated by hypernetwork for different users.

Figure 4: Privacy attack results: The second and fourth rows
are the results of the DLG attack. The third and fifth rows
are the results of the iDLG attack.

distributions by inputting the corresponding embedding vector to
extract the unique features.

5.3 Privacy Evaluation
In order to evaluate the security of FL algorithms, we have done on
four different datasets attack experiments.

Peak signal-to-noise ratio (PSNR) is a measure of the reconstruc-
tion quality of an image compression signal. PSNR is reported under
each recovered image. We calculate PSNR to represent the similar-
ity between the original image and the reconstructed image. It is
calculated as 𝑃𝑆𝑁𝑅 = 20 · log10

(
255√
𝑀𝑆𝐸

)
, where𝑀𝑆𝐸 is the Mean

Squared Error. The larger value of PSNR indicates that the attacked
reconstructed image is more similar to the original image. Accord-
ing to Fig.4 shown, we can intuitively observe that the traditional
FL method transmits the main network information with the risk
of leaking data, which seriously threatens the basic principle of FL.
On the contrary, the information transmitted by HFN algorithm is
completely resistant to the attacks of DLG[19] and iDLG[18].

5.4 The Affect of Embedding Vector Sizes on
HFN

HFN introduces a latent hyperparameter, the size of the Embedding
Vector, which is related to the performance and communication

Figure 5: The impact of different embedding sizes in HFN on
communication size and accuracy.

overhead of FL. To investigate the relationship between them, we
conducted experiments to explore the impact of different embed-
ding sizes on accuracy and communication volume. As shown in
Fig.5, the red line represents the Cost per Round (CPR) for individ-
ual users, which corresponds to the right y-axis. CPR is composed
of the parameter quantity transmitted by each user in one round,
including both upload and download. It is important to note that
the values represent the number of parameters transmitted in the
network, not the actual network traffic. The other colors represent
the accuracy achieved after convergence in FL, which corresponds
to the left y-axis. The green line corresponds to MNIST, the pur-
ple line corresponds to FMNIST, the orange line corresponds to
CIFAR-10, and the black line corresponds to CIFAR100. Comparing
the iid and non-iid (solid and dashed lines), it can be observed that
in the non-iid setting, as the embedding vector size increases, the
improvement in accuracy is more significant compared to the iid
case. This is because in the non-iid scenario, the variations in data
distributions among different users require the convolutional layers
of different users to extract more diverse feature information. This
necessitates a larger embedding vector for assistance, resulting in a
notable increase in accuracy as the embedding vector size increases.

Regarding communication overhead, the communication cost of
HFN increases with the increase in embedding size. The commu-
nication overhead of most FL algorithms is similar to FedAvg. We
calculated the CPR of FedAvg for individual users for the MNIST,
FMNIST, CIFAR10, and CIFAR100 datasets, which are 155K, 1127K,
1128K, and 4519K, respectively. Comparing the different embedding

6



Table 2: The accuracy of the algorithms under four databases

MNIST FMNIST CIFAR10 CIFAR100
Aggregation method non-iid iid non-iid iid non-iid iid non-iid iid

Centre 99.49% 93.60% 84.78% 54.78%
FedAvg 98.67% 98.96% 92.40% 90.12% 69.95% 62.12% 33.85% 33.67%
Local 94.82% 93.35% 86.94% 76.74% 57.05% 30.45% 20.15% 6.98%

FedBabu 98.94% 98.81% 94.12% 91.04% 73.34% 64.39% 43.79% 36.67%
FedProx 98.85% 99.04% 93.10% 90.39% 69.89% 60.88% 31.14% 34.17%
FedGen 97.63% 98.18% 91.78% 89.36% 67.06% 62.75% 26.32% 16.06%
FedDyn 98.73% 99.01% 93.20% 90.64% 67.76% 61.60% 29.23% 34.37%
pFedSim 98.92% 99.01% 92.41% 90.47% 70.45% 65.66% 43.74% 37.30%
FedPer 99.05% 98.84% 92.36% 89.59% 72.67% 62.63% 31.15% 17.10%
FedBN 99.14% 98.94% 91.64% 89.74% 69.16% 33.77% 35.39% 32.08%
FedRep 98.10% 98.01% 92.36% 87.18% 75.44% 65.59% 28.77% 12.38%
pFedla 98.40% 98.49% 92.78% 88.64% 66.18% 56.98% 29.54% 26.17%

FedFomo 93.95% 92.02% 86.09% 76.06% 56.29% 24.85% 17.71% 12.02%
HFN(Ours) 97.91% 98.59% 93.33% 91.64% 76.78% 77.95% 47.92% 45.60%

Table 3: Communication cost for a single user at each level of the different algorithms when the dataset is CIFAR10-iid

CPR 10% 20% 30% 40% 50% 60% 70%
HFN_128 0.57M 0.00M (0×) 1.13M (2×) 7.92M (14×) 10.75M (19×) 15.84M (28×) 23.19M (41×) 35.63M (63×)
FedAvg 1.13M 1.13M (1×) 5.64M (5×) 15.79M (14×) 46.24M (41×) 46.24M (41×) 91.36M (81×) \
FedBabu 1.13M 1.13M (1×) 2.25M (2×) 7.89M (7×) 25.91M (23×) 46.19M (41×) 46.19M (41×) \
FedProx 1.13M 1.13M (1×) 14.66M (13×) 46.24M (41×) 46.24M (41×) 72.18M (64×) 92.48M (82×) \
FedGen 1.13M 1.13M (1×) 28.29M (25×) 39.60M (35×) 46.39M (41×) 89.38M (79×) 91.65M (81×) \
FedDyn 1.13M 1.13M (1×) 3.38M (3×) 14.66M (13×) 34.96M (31×) 46.24M (41×) 91.36M (81×) \
pFedSim 1.13M 1.13M (1×) 5.64M (5×) 15.79M (14×) 46.24M (41×) 46.24M (41×) 109.40M (97×) \
FedPer 1.13M 1.13M (1×) 6.76M (6×) 16.90M (15×) 28.16M (25×) 46.19M (41×) 91.25M (81×) \
FedBN 1.13M 1.13M (1×) 4.51M (4×) 15.79M (14×) 46.24M (41×) 46.24M (41×) 91.36M (81×) \
FedRep 1.13M 0.00M (0×) 9.01M (8×) 15.77M (14×) 40.56M (36×) 78.86M (70×) \ \
pFedla 1.13M 0.00M (0×) 16.92M (15×) 27.07M (24×) 46.24M (41×) 91.36M (81×) \ \

FedFomo 3.95M 0.00M (0×) 15.79M (4×) 35.53M (9×) 221.06M (56×) 307.91M (78×) \ \

Table 4: The effect of HFN combined with other algorithms

MNIST FMNIST CIFAR10 CIFAR100
non-iid iid non-iid iid non-iid iid non-iid iid

Acc Comm Acc Comm Acc Comm Acc Comm Acc Comm Acc Comm Acc Comm Acc Comm
HFN+FedAvg -1.02% 15.15% -0.75% 13.46% 0.98% 50.14% 1.41% 61.29% 13.38% 51.95% 15.33% 74.60% 13.13% 78.80% 13.63% 48.98%
HFN+FedProx -0.90% 18.27% -0.55% 19.41% 0.25% 54.32% 1.02% 71.31% 8.14% 78.88% 16.98% 50.55% 16.19% 164.75% 12.51% 48.98%
HFN+FedDyn -0.82% 22.08% -0.55% 18.55% -0.34% 60.64% 1.22% 50.14% 9.30% 140.62% 16.38% 70.93% 18.18% 172.58% 11.67% 51.34%
HFN+FedBN -0.86% 18.40% -1.29% 12.84% -0.89% 71.45% 1.23% 50.14% 0.16% 51.07% 36.67% 94.83% 4.58% 158.78% 5.29% 49.55%
HFN+pFedla -0.38% 12.00% -0.21% 15.86% 0.22% 54.32% 3.13% 71.31% 10.92% 119.78% 20.17% 50.14% 16.52% 152.66% 19.51% 34.52%
HFN+FedFomo 3.95% 24.43% 6.47% 32.10% 6.49% 21.88% 15.53% 35.00% 17.19% 71.62% 50.23% 33.12% 20.87% 34.04% 28.54% 11.40%

sizes of HFN in Fig.5, the communication overhead is significantly
higher. However, when employing an embedding vector size of
1, the CPR of HFN on the four datasets is only 640. Therefore,
the HFN algorithm has an advantage in terms of communication
overhead. This graph allows us to flexibly balance accuracy and
communication overhead based on practical requirements, enabling
the selection of an appropriate embedding vector size.

5.5 Performance Evaluation
The personalization accuracies under the same communication
round limit are shown in Table 2. In most cases, the HFN algorithm
demonstrates good performance, especially when the dataset is
complex. When HFN comes to process the simpler MNIST dataset,
average performance may be observed. This can be attributed to
the relative simplicity of the MNIST dataset and the simpler model
structure used. In the MNIST dataset, the image has a lower image

7



resolution and the digit patterns are relatively simple, so a simple
model can be used to extract enough features for classification. In
this case, the introduction of a hypernetwork may increase the com-
plexity of the model and make the task relatively more complex,
resulting in less remarkable accuracy. It is worth noting that hyper-
network were originally designed to handle more complex tasks
and models. It is when applied to more complex datasets (CIFAR
series) and models that the benefits of HFN become more signifi-
cant. This is because the choice of model parameters can be more
critical in complex tasks, and the hypernetwork can provide more
appropriate parameters by adaptively generating model parameters
that produce higher accuracy.

Communication cost has always been a problem in FL, but the
HFN algorithm can solve this problem effectively. In Table 3, we
show the communication cost of different algorithms during the
training process when users are trained with the CIFAR-10 dataset
(iid). Also, we list the communication costs incurred by each al-
gorithm in reaching a certain accuracy threshold. The number in
parentheses indicates the rounds in which the algorithm reaches
that accuracy threshold, by which we can roughly determine the
convergence speed of each algorithm. It can be seen that HFN not
only has a significant advantage in convergence speed, but also
has an unrivaled advantage in communication cost. It is worth not-
ing that the advantage of HFN in reducing communication costs
is due to its ability to generate model parameters locally without
the need to transmit large amounts of main network parameters.
This local generation of parameters reduces the amount of data
transfer between users and improves the efficiency of FL. Therefore,
HFN can better solve the problem of communication overhead in
FL by reducing the amount of data transfer between users while
producing better accuracy.

5.6 HFN with Other FL Algorithm
Another major advantage of HFN is that it can be easily combined
with existing algorithms, by which the advantages of HFN can be
attached to existing algorithms and benefit from other algorithms.
As shown in Table 4, where ACC indicates how much the algorithm
has improved on the original accuracy after fusion, for example, the
accuracy of FedAvg at CIFAR10 non-iid is 69.95%, and HFN+FedAvg
is 83.33%, then the corresponding value of ACC in the table should
be recorded as 13.38%. We also counted the corresponding com-
munication consumption of the algorithms from the beginning of
training, all the way to the final accuracy, compared with the fused
algorithms. The percentage in Comm means the percentage of the
total communication consumption of the new algorithms after fus-
ing the HFN algorithms to the original total consumption. It can be
noticed that the communication efficiency of all the baseline algo-
rithms is greatly improved by combining HFN. In some cases, the
total amount of communication exceeds 100%, which is reasonable
due to the fact that the convergence accuracy has been improved
more than the original and more communication rounds are needed
to achieve higher accuracy.

6 CONCLUSION
In this work, we explore and utilize the potential of hypernetwork
in FL. Compared with the previous traditional architecture, using

the hypernetwork instead of the main network for communication
learning greatly saves the communication cost, improves safety and
the powerful learning ability of the hypernetwork also improves
the accuracy of the main network. We verified the performance
of traditional algorithms and HFN under different datasets with
different distributions through a large number of experiments, and
then did many targeted experiments on HFN and fused this novel
approach into the traditional FL method to achieve better results.

7 CITATIONS
REFERENCES
[1] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav

Choudhary. 2019. Federated learning with personalization layers. arXiv preprint
arXiv:1912.00818 (2019).

[2] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar.
2018. Expanding the reach of federated learning by reducing client resource
requirements. arXiv preprint arXiv:1812.07210 (2018).

[3] Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yujuan Tan, and Liang
Liang. 2020. Self-balancing federated learning with global imbalanced data in
mobile systems. IEEE Transactions on Parallel and Distributed Systems 32, 1 (2020),
59–71.

[4] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized
federated learning with theoretical guarantees: A model-agnostic meta-learning
approach. Advances in Neural Information Processing Systems 33 (2020), 3557–
3568.

[5] David Ha, Andrew Dai, and Quoc V. Le. 2016. HyperNetworks.
arXiv:1609.09106 [cs.LG]

[6] Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. Group knowl-
edge transfer: Federated learning of large cnns at the edge. Advances in Neural
Information Processing Systems 33 (2020), 14068–14080.

[7] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learningmultiple layers of features
from tiny images. (2009).

[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[9] Daliang Li and Junpu Wang. 2019. Fedmd: Heterogenous federated learning via
model distillation. arXiv preprint arXiv:1910.03581 (2019).

[10] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
learning: Challenges, methods, and future directions. IEEE signal processing
magazine 37, 3 (2020), 50–60.

[11] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[12] Jaehoon Oh, Sangmook Kim, and Se-Young Yun. 2021. Fedbabu: Towards
enhanced representation for federated image classification. arXiv preprint
arXiv:2106.06042 (2021).

[13] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and
Ramtin Pedarsani. 2020. Fedpaq: A communication-efficient federated learning
method with periodic averaging and quantization. In International Conference on
Artificial Intelligence and Statistics. PMLR, 2021–2031.

[14] Suhail Mohmad Shah and Vincent KN Lau. 2021. Model compression for com-
munication efficient federated learning. IEEE Transactions on Neural Networks
and Learning Systems (2021).

[15] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. 2021. Personalized
federated learning using hypernetworks. In International Conference on Machine
Learning. PMLR, 9489–9502.

[16] Zhiqiang Xia, Ce Zhu, Zhengtao Wang, Qi Guo, and Yipeng Liu. 2016. Every
filter extracts a specific texture in convolutional neural networks. arXiv preprint
arXiv:1608.04170 (2016).

[17] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[18] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. idlg: Improved deep
leakage from gradients. arXiv preprint arXiv:2001.02610 (2020).

[19] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients.
Advances in neural information processing systems 32 (2019).

8

https://arxiv.org/abs/1609.09106

	Abstract
	1 Introduction
	2 Related Work
	2.1 Personalized Federated Learning
	2.2 Efficient Communication in Federated Learning

	3 Preliminaries
	3.1 Federated Learning
	3.2 HyperNetwork
	3.3 Problem Definition

	4 Methdology
	4.1 Framework Overview
	4.2 pFL Based on Hypernetwork

	5 Experiments
	5.1 Experiment Setup
	5.2 Hypernetwork for Parameter Generation
	5.3 Privacy Evaluation
	5.4 The Affect of Embedding Vector Sizes on HFN
	5.5 Performance Evaluation
	5.6 HFN with Other FL Algorithm

	6 Conclusion
	7 Citations
	References

