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ABSTRACT
Converting natural language (NL) queries into formal graph query
languages (GQL) is complex and requires specialized knowledge.
Conventionalmethods are constrained by non-standardized datasets
and limited node type diversity, hindering effective graph query
generation. Moreover, utilizing database schema as contextual in-
formation seldom achieves high precision in identifying critical
entity attributes. In order to address these limitations, this paper in-
troduces a novel approach, that is termed Filter Condition Attribute
Values (FCAV), which aims to augment the generation of Text-to-
GQL. The initial datasets are constructed using template-filling and
problem rewriting by large language models (LLMs). By integrat-
ing FCAV from the database into the input, our method enriches
contextual information available to LLMs, enhancing the ability to
discern the intricate relationships among NL query, graph schema,
and actual data in the database. The approach is validated using two
purpose-built datasets: TCMGQL (Traditional Chinese Medicine)
and EduGQL (education). The experimental results show that our
method outperforms traditional approaches on both non-fine-tuned
and fine-tuned LLMs, and achieves 2 ∼ 3% better performance in
domain migration tests.
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1 INTRODUCTION
Graph databases (GraphDBs), such as Neo4j [20], NebulaGraph
[29], and Amazon Neptune [2] have become essential tools due to
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their efficiency and scalability in managing complex relational data.
Processing natural language (NL) queries enhances user interaction
with databases by eliminating the necessity for users to master
complex query languages. This accessibility benefits non-technical
users, broadening the applicability of data queries across various
domains including knowledge-based question answering systems
[6], voice assistants [3], and other natural language processing
applications.

There are several challenges associated with transforming NL to
graph query languages (NL2GQL). Firstly, the inherent ambiguity
of NL can cause a single sentence to convey different meanings in
different contexts, requiring deep linguistic comprehension from
the model to parse user intent accurately [15]. Secondly, NL2GQL
involves detailed grammatical and semantic analysis, necessitating
not only keyword identification but also an understanding of sen-
tence structure and context to generate correct query statements.
Thirdly, the unique syntax and semantics of GQL, tailored to the
different structures of GraphDBs, require the conversion system
to understand not only NL, but also the query characteristics and
data patterns specific to GraphDBs [8].

The advancement of large language models (LLMs) have led to a
critical area of research: the effective integration of these models
with GraphDBs to convert NL queries into formal GQL. While these
studies[16, 18, 19] have produced some promising outcomes. How-
ever, existing datasets, such as SpCQL [10], demonstrate limited
diversity and a lack of standardization. The majority of datasets
use only two labels, “node" and “relationship", which imposes con-
straints on model training and negatively impacts on the general-
ization capability and practical utility of models. Liang [17] and
Zhong [32] have both achieved significant success by fine-tuning
LLMs using schema information binding with GraphDBs. However,
the mapping process is often obscured by the ambiguity of NL and
the abstraction of database schema. For example, using a specific
attribute value from the database as a query keyword and relying
solely on schema information can lead to GQL statements that in-
accurately reflect the essential entity information. This inaccuracy
arises because the schema does not specify the corresponding label
or attribute key for the given attribute.

In order to bridge these gaps, we construct the TCMGQL and
EduGQL datasets from real-world databases, ensuring standardized
type and diversity. We develop over ten NL and GQL templates
based on database schema information, enhanced by LLMs. The
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proposed Filter Condition Attribute Values (FCAV) method uses
database schema and attribute values as inputs to fine-tune LLMs,
improving GQL generation accuracy. Experimental evaluations on
various LLMs, confirms the effectiveness of our approach.

In this paper, our contributions can be summarized as follows:
(1) The FCAV is introduced as a comprehensive pipeline where

attribute values of real data are integrated with GQL generation,
leveraging the strengths of LLMs.

(2) A foundational paradigm for the creation of training datasets
is presented.

(3) Experimental evaluations demonstrate that this approach
yields significantly more accurate results than baseline methods.

We introduce the related work in Section 2. Section 3 outlines
the preliminaries, while Section 4 details our pipeline. Section 5
presents the dataset, and Section 6 analyzes the experimental results.
Section 7 discusses the limitations of our study. Finally, section 8
draws a conclusion.

2 RELATEDWORK
2.1 Traditional Approaches to NL2GQL
Historically, NL2GQL have relied heavily on manual rule formu-
lation [5, 31]. GraphAware NLP, a plugin for Neo4j developed by
Albertodelazzari [4], represents a significant advancement, offer-
ing a comprehensive suite of tools. Similarly, the MANTRA QA
system by Oro [23] designed to convert NL queries into SPARQL
and Cypher statements. However, the disadvantages of these ap-
proaches are domain dependence on experts and involvement of
labor in the process of development. Recent studies prompt a shift
towards data-driven approaches. Many researchers have adopted
Seq2Seq models [24, 25, 33] and hybrid techniques, integrating di-
verse models to enhance performance. However, the way databases
are modeled depends heavily on domain-specific knowledge, mak-
ing it difficult to generalize these approaches across domains.

2.2 NL2GQL with LLM
LLMs are advanced artificial intelligence models trained on exten-
sive text data to accurately understand and generate human-like
language [9]. The integration of LLMs with database systems have
revolutionized the processing of NL to structured queries, due to the
extensive coverage, generalization capabilities, and profound NL un-
derstanding of LLMs [7, 12, 21]. Despite their advancements, LLMs
face challenges in aligning with domain-specific database knowl-
edge, crucial for knowledge-intensive tasks [13]. Recent researchers
aim at bridging this gap, Zhong [32] presents the SyntheT2C dataset,
which employs LLMs for generating synthetic Query-Cypher pairs.
Kang [14] introduces the SURGEmethod, which leverages subgraph
retrieval to improve text consistency. Furthermore, Liang [17] has
demonstrated the potential for aligning LLMs with GraphDBs using
a dataset binding with schema info of graph, database knowledge
is integrated into LLMs through fine-tuning using low-rank adap-
tation (LoRA) [11], thereby fundamentally enhancing generation
accuracy.

However, these methods often overlook the dynamic and intri-
cate nature of real data, particularly when attribute values are used
as query keywords, which are crucial for generating accurate GQL.
For example, as illustrated in Figure 1, if the NL input lacks specific

Nodes:

[

    { label : ‘Director’, properties : [ ‘name’, ‘birthday’, ‘networth’ ] },

    { label : ‘Movie’, properties : [ ‘title’, ‘released’, ‘tagline’ ] }

]

...

Edges:

[

   { label : ‘directs’, properties : [], start_label : ‘Director’, end_label: ‘Movie’},

   { label : ‘acts_in’, properties : [‘role’], start_label :‘Director’, end_label : ‘Movie’}

]

...

GQL2:  MATCH 

( n: Movie    

 {  title :   "Titanic" }

) 

 RETURN n ;

GQL1:  MATCH  

( n: Director

 { name : "Titanic" }

)  

RETURN n ;
NL:  Please give me 

detailed information 

about Titanic ?

Graph DB Schema Info

LLMs

Figure 1: Example of NL2GQL conversion using LLMs

keywords, such as “Movie”, to indicate the label for “Titanic”, a
non-fine-tuned LLM might struggle to determine whether to use
the “name” attribute key for a “Director” or the “title” attribute key
for a “Movie” to generate GQL.

This paper bridges this gap with a dual strategy. First, we system-
atize graph query templates to fine-tune LLMs, allowing them to
learn the relationships among NL, the graph schema, and the actual
data in the graph. Second, we introduce the FCAV approach to
enhance both the graph and the underlying LLMs, creating a com-
prehensive pipeline that aligns LLM knowledge with GraphDBs.

3 PRELIMINARIES
3.1 Property Graph
Definition 1 (Property Graph Model). A property graph 𝐺 is
defined as a 5-tuple (𝑉 , 𝐸, 𝜌, 𝜆, 𝜎) where:𝑉 is a finite set of vertices;
𝐸 is a finite set of edges, with 𝑉 ∩ 𝐸 = ∅; 𝜌 : 𝐸 → (𝑉 × 𝑉 ) is
a function that associates each edge with a pair of vertices, for
example, 𝜌 (𝑒) = (𝑣1, 𝑣2) denotes a directed edge 𝑒 from vertex 𝑣1
to 𝑣2; 𝜆 : (𝑉 ∪ 𝐸) → Lab is a labeling function mapping vertices
and edges to sets of labels, such that for a vertex 𝑣 (or an edge 𝑒),
𝜆(𝑣) (or 𝜆(𝑒)) denotes its label; 𝜎 : (𝑉 ∪ 𝐸) × Prop → Val maps a
vertex or edge and a property from the set Prop to a value in Val,
such that for 𝑣 ∈ 𝑉 (or 𝑒 ∈ 𝐸), 𝑝 ∈ Prop, the value of property 𝑝 on
vertex 𝑣 (or edge 𝑒) is 𝜎 (𝑣, 𝑝) = val.

Figure 2 illustrates a property graph of a movie knowledge graph.
In this graph, each vertex and edge is assigned a unique ID, labels,
and a set of properties comprising a property name and value.

3.2 Graph Query Language
GQL is an advanced query language designed for the retrieval and
manipulation of data in GraphDBs. GQL queries primarily consist
of the following components:
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role=“Steerage Dancer”

name=“Jame Cameron”

birthday=”1954-08-16”

networth =1.79E9

ν1:Director

title=“Titanic”

released=1995

tagline=”The hottest 

data on earth”

ν2: Movie

e1: directs

e2: acts_in

Figure 2: Example of a property graph

• Pattern Matching. Given a graph 𝐺 and a query pattern
𝑄 = (𝑉𝑞, 𝐸𝑞), the objective of pattern matching is to find
a subgraph 𝐺 ′ = (𝑉 ′, 𝐸′) of 𝐺 , such that 𝐺 ′ is isomorphic
to 𝑄 . This means there exists a bijection 𝑓 : 𝑉𝑞 → 𝑉 ′ such
that (𝑢, 𝑣) ∈ 𝐸𝑞 ⇐⇒ (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸′.

• Filter Conditions. Filter conditions can be represented by
predicate logic formulas. For example, for an attribute 𝑝
of 𝑣 and a value 𝑎, the filter condition can be expressed as
𝜎 (𝑣, 𝑝) = 𝑎.

• Return Results. The return result can be viewed as a func-
tion 𝑅 that maps from the matched subgraph 𝐺 ′ to a result
set. This mapping can be a projection (returning specific
vertices or edges), an aggregation (such as counting or sum-
ming), or more complex computations.

For example, suppose we have a graph𝐺 and the following GQL.

MATCH (n:Person)-[:KNOWS]->(m:Person)
WHERE n.age > 30
RETURN n.name, m.name

In this query, the Pattern Matching component 𝑄 identifies
a subgraph consisting of two vertices and one edge, where both
vertices are labeled Person and the edge is labeled KNOWS. The
Filter Conditions are represented by the predicate 𝑛.𝑎𝑔𝑒 > 30,
which ensures that only vertices with an age greater than 30 are
considered. Finally, the Return Results specify the retrieval of the
name attribute of the vertices n and m in the matched subgraph.

3.3 Problem Definition
Problem Statement. Converting NL to GQL via LLMs involves us-
ing schema data from GraphDBs as contextual prompts to enhance
the accuracy of the generated GQL queries. Figure 3 illustrates the
mapping relationship between NL and GQL.

A significant challenge in using NL queries for GraphDBs is cor-
rectly identifying whether a term corresponds to a label, a attribute
key, or a attribute value. This differentiation is not always evident
from the schema information alone.

If we can extract specific labels and corresponding attribute
keys for the query keyword “Titanic” from real data using natural
language descriptions, it can better filter out irrelevant queries,
thereby improving the accuracy of query generation.

role

name

birthday

networth

v: Director

title

released

tagline

e: directs

e: acts_in

GQL:  MATCH  

( n :Movie { title : 

"Titanic" })

RETURN n ;

NL:  Please give me 

detailed 

information about

the   Titanic ? LLMs

Schema info：

Real data info：

attr ibute value label attr ibute key

Titanic Movie title

v: Movie

Figure 3: The mapping relationship between NL and GQL

However, the majority of GraphDBs are unable to search for
attribute value information using NL. To address this issue, we de-
fine attribute values that can serve as Filter Conditions as FCAV.
The study proposes embedding FCAV information matching the NL
query into the context for fine-tuning the LLMs. A comprehensive
description of the pipeline can be found in Section 4.

4 PIPELINE
In order to enhance LLMs to generate GQL, it is essential to accu-
rately extract query keywords from NL descriptions, particularly
when these keywords correspond to attribute values in the actual
data. This precision is crucial for enabling LLMs to construct more
accurate pattern-matching components and filter conditions. The
pipeline is illustrated in Figure 4 and comprises three main stages:
(1) graph vectorization, (2) Training-Dataset generation, and (3)
fine-tuning and inference processes.

4.1 Graph Vectorization
First, the vertices 𝑉 and edges 𝐸 of the graph 𝐺 are traversed.
Subsequently, the FCAV is vectorized and associated with 𝜆(𝑣) (or
𝜆(𝑒)), along with the attribute key of the FCAV. These are stored
in a vector database (V-DB), which serves as an extension to the
LLM-Extended-Dataset and facilitates the generation of prompts
during inference.

4.2 Training-Dataset Generation
The Training-Dataset generation process is methodically structured
into four sequential steps, each designed to incrementally enhance
the complexity and diversity of training datasets for LLM-based
NL2GQL. The steps are as follows:
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Graph DB (𝐺)

Vector DB (V-DB)

Schema 

definition

Fill template use real data

Generate NL-question:Please give me detailed information about Titanic?

Vary template use LLM

Extend use 

skip, limit ,and order

Add schema and FCAV 

Fine-Tuning

NL-questionFCAV from V-DBSchema of 𝐺

GQL:  MATCH  (n: Movie { title: "Titanic" })  return n ;

Template-TableTemplate-Table

Base-DatasetBase-Dataset

Grammar-

Extended-Dataset

Grammar-

Extended-Dataset

LLM-

Extended-DataSet

LLM-

Extended-DataSet
Train-DatasetTrain-Dataset

Instruction

Graph 

vectorization

Organizing prompt 

Inference

Generate GQLValidation by G, ensuring 

no empty result.

Extract schema

Validation by G, 

ensuring same results 

Figure 4: FCAV pipeline

Base-Dataset. The schema of𝐺 is analyzed with the objective
of constructing basic NL question and GQL template pairs (NL-GQL-
Pairs). Subsequently, these templates are populated with specific
data by traversing 𝐺 within the database, thereby generating mul-
tiple NL and GQL query pairs per template. Further details can be
found in Section 5.

Grammar-Extended-Dataset. TheBase-Dataset are extended
to include pagination and sorting features, resulting in complex
template structures. These templates are then populated with ran-
domly generated numerical values. By executing GQL statements,
NL-GQL-Pairs with empty results are filtered out, ultimately creat-
ing the Grammar-Extended-Dataset.

LLMs-Extended-Dataset. We employ LLMs to rephrase each
NL-GQL-Pair in the Grammar-Extended-Dataset using prompt
engineering techniques. This process refines the format and content
of the templates by incorporating diverse expressions and syntacti-
cal variations. Subsequently, these newly generated NL-GQL-Pairs
are executed in the database, and only those pairs that produce
results consistent with the original GQL queries are retained. This
approach enhances the robustness and diversity of the training
data.

Training-Dataset. Each NL question from LLMs-Extended-
Dataset undergoes a similarity search in the V-DB to identify rel-
evant FCAV. By incorporating database schema information and
FCAV-related details as prefixed contextual information to the NL
questions. This process enables the fine-tuning of LLMs to recog-
nize and utilize structural and real data of 𝐺 , thereby facilitating
the generation of accurate GQL queries.

4.3 Fine-Tuning and Inference Processes
Fine-TuningProcess. During the fine-tuning phase, theTraining-
Dataset is employed to adjust the weights of LLMs. This crucial
step guarantees that the LLMs align closely with the specific knowl-
edge in 𝐺 . The fine-tuning process enables the LLMs to learn the
intricate relationships among NL, the schema of 𝐺 , and the actual
data in 𝐺 .

Inference Process. In the phase of inference, the four elements
are entered into LLMs in the form of the following: ([Instruction],
[Schema of 𝐺], [FCAV from V-DB], [NL question]). This prompts
the LLMs to generate GQL.

5 DATASET
This section presents the methodology employed in the construc-
tion of Training-Dataset, with the Traditional Chinese Medicine
(TCM) database serving as a case study. The data are stored using
Neo4j, with the GQL being Cypher. Figure 5 illustrates the schema
of the TCM database.

5.1 Database Overview
The TCMdatabase is represented by a property graph𝐺 = (𝑉 , 𝐸, 𝜌, 𝜆, 𝜎),
where: 𝑉 includes vertices with labels such as Place, Medicine,
Symptom, Function, Herbal, Categorization, and Excipients.
𝐸 includes edges without properties but with various relationship
types. 𝜎 (𝑣, 𝑝) assigns properties like name, type, price to vertices.
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name
character
note
package
taboo
usage

Medicine

name

price

Excipient

name

Function 

name

Categorization

name

type

price

Herball

name

detail

Symptom

name

Place

classifymedicine_production

adaptive_symptom

main_function

excipients_composition

main_composition

herball_production

Figure 5: Schema of the TCM database

5.2 Base-Dataset Details
In order to facilitate analysis, queries are classified into two cate-
gories, as illustrated in Figure 6. The first category is Data-Driven,
while the second is Non-Data-Driven. Non-Data-Driven queries
are manually constructed (e.g., querying the total number of nodes).
Data-Driven queries are further classified into Schema-Filter and
Parameter-Filter queries, encompassing single-node and multi-
hop relationships.

5.2.1 Parameter-Filter Class General Query. A Parameter-Filter
GQL query can be described in the following form:

MATCH pattern_param
[
WHERE filter_param_key_1 = filter_param_value_1
[ AND filter_param_key_2 = filter_param_value_2 ]
[ AND filter_param_key_3 = filter_param_value_3 ]
...

]
RETURN return_param
[ ORDER BY order_param ]
[ SKIP skip_param ] [ LIMIT limit_param ]

In the general form, pattern_param is responsible for defining
thePatternMatching,filter_param_keys andfilter_param_values
are utilized for defining the Filter Conditions, and order_param,
skip_param, and limit_param are employed for controlling the
optional sorting and pagination.

5.2.2 Template Filling. Algorithm 1 depicts the Parameter-Filter
template filling algorithm, which has been designed with the spe-
cific purpose of populating templates with data extracted from
graph queries. Each row in Table 1 is processed, with “DS” indicat-
ing the data source for the template. The algorithm retrieves the
GQL query from the data source column and executes it on the
graph𝐺 to obtain a set of results. Subsequently, a random selection
mechanism, based on a predefined selection probability, is applied

Algorithm 1: Template Filling Algorithm
Input :Data from template design table
Output :Filled templates

1 for each row in Table 1 do
2 𝑔𝑞𝑙_𝑞𝑢𝑒𝑟𝑦 ← row[“DS”];
3 𝑛𝑙_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← row[“NT”];
4 𝑔𝑞𝑙_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← row[“QT”];
5 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← executeGQL(𝑔𝑞𝑙_𝑞𝑢𝑒𝑟𝑦);
6 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← empty list;
7 for each result in results do
8 if random() < selection_probability then
9 append(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑒𝑠𝑢𝑙𝑡𝑠, 𝑟𝑒𝑠𝑢𝑙𝑡);

10 for each selected in selected_results do
11 fillTemplate(𝑔𝑞𝑙_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 , 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) ; /* Filling

the pattern matching of query template */

12 fillTemplate(𝑛𝑙_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 , 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) ; /* Filling
the pattern matching of natural language
template */

13 𝑒𝑙𝑒_𝑓 𝑎𝑣𝑐 ← filterWithFCAV(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑);
14 𝑐𝑜𝑚𝑏𝐹𝑖𝑙𝑡𝑒𝑟𝑠 ← combinations(𝑒𝑙𝑒_𝑓 𝑎𝑣𝑐) ;

/* Generate combinations of filter

attributes */

15 fillFilterParams(𝑐𝑜𝑚𝑏𝐹𝑖𝑙𝑡𝑒𝑟𝑠);
16 𝑎𝑙𝑙_𝑘𝑒𝑦𝑠 ← getAllAttributeKeys(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) ;

/* Retrieve all attribute keys from the

selected result */

17 𝑘𝑒𝑦_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ← combinations(𝑎𝑙𝑙_𝑘𝑒𝑦𝑠) ;
/* Generate combinations of attribute

keys */

18 fillReturnParams(𝑘𝑒𝑦_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠);

to each result, ensuring only a subset is chosen for further process-
ing. The selected results are then used to populate both NL and
GQL templates.

In the next step, attributes that can serve as FCAV are identified
in each selected result. The keys and values of these attributes are
extracted and combined to form filter parameters, which populate
the respective templates. Additionally, all attribute keys from the
selected results are retrieved and their combinations are used to fill
return parameters in the templates.

This multi-step process ensures that the templates are compre-
hensively populated with relevant data. Once the templates are
populated, the dataset construction is completed in accordance
with the procedures outlined in Section 4.2. The Schema-Filter
process, like the Parameter-Filter, is conducted with the objective
of ensuring the quality and integrity of the data.

6 EXPERIMENTS
6.1 Experimental Setup
The LLaMA-Factory tool [30] was employed in conjunction with
LoRA to conduct a fine-tuning process on the LLMs. The training
procedure utilized a linear scheduler with an initial learning rate of
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GQL Query

Non-Data-Driven

Data-Driven

NL：tell me the total node number

GQL：match （n）return count (n)

Schema-Filter Parameter-Filter

one nodeone skiptow skip

NL：tell me all medicine info

GQL：match （n: medicine ）return n

NL：tell me all medicine info and their main_composition 

GQL：match （n1）-[:main_composition] ->(n2) 

return  n2

NL：tell me all medicine info and their main_composition with herbal_production  

GQL：match  (n1:medicine -[:main_composition]->(n2)-[:herbal_production ]->(n3) 

return  n2,n3

NL：tell me the price of  cold medicine

GQL：match （n {name: ‘cold medicine’}）return  n.price

NL：tell me all cold medicine info and  its main_composition with herbal_production  

GQL：match  (n1{ name: ‘cold medicine’ })-[:main_composition] -(n2)-

[:herbal_production ]-(n3) return  n2,n3

one node one skip tow skip...

NL：tell me all medicine info and  its  main_composition 

GQL：match （n1）-[:main_composition] -(n2) 

return  n2

...

Figure 6: Classification of query templates

Table 1: Template Design And Data Source Samples

Types Data Source of Template (DS) NL Template (NT) GQL Template (QT)

One node MATCH (n1) RETURN n1;
query filter_param_value
then return return_param

MATCH (n1) where
n1.filter_param_key = filter_param_value
RETURN return_param

One skip
MATCH (n1)−[r1]−>(n2)
RETURN *;

query 𝜆(n2) of 𝜆(r1)
filter_param_value
then return return_param

MATCH (n1:𝜆(n1))−[r1:𝜆(r2)]
−>(n2:𝜆(n2)) where
n1.filter_param_key = filter_param_value
RETURN return_param

Two skip
MATCH (n1)−[r1]−>(n2)
−[r2]−>(n3)
RETURN *;

query 𝜆(n3) of 𝜆(r2) of
𝜆(n2) of 𝜆(r1)
of filter_param_value
then return return_param

MATCH (n1:𝜆(n1))−[r1:𝜆(r1)]
−>(n2:𝜆(n2))−[r2:𝜆(r2)]
−>(n3:𝜆(n3)) where
n1.filter_param_key = filter_param_value
RETURN return_param

1𝑒 − 4. The training parameter for epochs was set to 3. The AdamW
optimizer was applied, and the batch size for training was set to
1. All experiments were conducted using an Nvidia GeForce 4090
GPU. During the experiments, we used BCEmbedding[22] as the
FCAV vectorization model and pgvector[26] as the V-DB.

Three models were selected for these experiments, each dis-
tinguished by its proficiency in specific areas of NLP. The first
model, ChatGLM3-6B [27], is optimized for Chinese conversational
generation and comprises 6 billion parameters. The second model,
Llama3-8B [28], is a versatile model with 8 billion parameters, suit-
able for a variety of NLP tasks. The third model, Qwen-7B [1], has
7 billion parameters and is recognized for its strong performance
across multiple language modeling tasks.

In our experiments, four distinct prompts were devised and eval-
uated on both the non-fine-tuned and fine-tunedmodels using these
specific prompts. This comprehensive approach aims to encompass
all current baseline methodologies for generating GQL using LLMs.
The experimental prompt settings are detailed in Table 2.

Table 2: Prompt Types and Descriptions

Prompt Form of Input
NP ([Instruction] [NL question])
SP ([Instruction] [Schema of 𝐺] [NL question])
SGP (Ours) ([Instruction] [Schema of 𝐺]

[FCAV from V-DB] [NL question])
GP ([Instruction] [FCAV from V-DB] [NL question])

6.2 Evaluation Metric
To assess the performance of GQL queries generated by various
LLMs-based methods, we used three evaluation metrics: syntac-
tic accuracy (SyA), semantic accuracy (SeA), and exact match rate
(EMR).

(1) Syntactic Accuracy (SyA)
SyA is defined as the ratio of the number of syntactically correct

GQL queries to the total number of generated queries:
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SyA =
𝑁correct syntax

𝑁total queries
(1)

Where 𝑁correct syntax denotes the number of GQL queries that
are syntactically correct (i.e., queries that do not produce syntax
errors when executed in the database), and 𝑁total queries represents
the total number of generated GQL queries.

(2) Semantic Accuracy (SeA)
SeA measures the proportion of GQL queries that yield results

consistent with the expected outcomes to the total number of gen-
erated queries:

SeA =
𝑁correct results
𝑁total queries

(2)

Where 𝑁correct results denotes the number of GQL queries that
produce the expected results. The SeA is determined by manually
evaluating the generated results against the expected outputs from
the test set. A query is considered semantically correct if its output
contains the results desired by the test set.

(3) Exact Match Rate (EMR)
EMR is defined as the ratio of the number of generated GQL

queries that exactly match the reference queries in the dataset to
the total number of generated queries:

EMR =
𝑁exact match
𝑁total queries

(3)

Where𝑁exact match denotes the number of generatedGQL queries
that exactly match the standard reference queries. To calculate the
EMR, all spaces are removed, and all characters are converted to
lowercase before matching.

6.3 Performance of Base Models
Initial tests were conducted without fine-tuning to establish a per-
formance baseline. The results, summarized in Table 3, highlight
the NL understanding capabilities of each model under different
prompting strategies.

Table 3: Base Model Performance

Model Method SyA (%) SeA (%) EMR (%)

ChatGLM3-6B
NP 17.65 0.65 0.00
SP 25.82 5.88 0.00

SGP (Ours) 32.03 2.61 0.00

Llama3-8B
NP 15.69 0.98 0.00
SP 23.86 2.94 0.65

SGP (Ours) 28.43 5.88 0.98

Qwen-7B
NP 58.50 1.63 0.00
SP 7.19 0.98 0.00

SGP (Ours) 9.80 2.94 0.00

In comparison to SP, our approach on ChatGLM3 and Llama3
generated a greater number of usable GQL queries due to the in-
corporation of FCAV context. In the case of the Qwen model, the
incorporation of contextual data had the effect of reducing the
probability of generating a usable GQL. This discrepancy may be

attributed to the fact that the Qwen-7B model had been trained
with GQL capabilities, whereas our prompt format differs from the
training data. Nevertheless, the SGP still demonstrates superior
performance when compared to SP contexts.

6.4 Fine-tuned Model Performance
Overall, while LLM models without fine-tuning exhibit some capac-
ity for GQL generation, they remain constrained in their practical
applicability.

Table 4: Fine-tuned Model Benchmark Result

Model Method SyA (%) SeA (%) EMR (%)

ChatGLM3-6B
NP 34.92 7.93 1.90
SP 93.65 49.90 40.32

SGP (Ours) 94.60 53.34 42.54

Llama3-8B
NP 99.05 77.46 56.83
SP 99.37 88.57 59.27

SGP (Ours) 99.47 89.52 60.32

Qwen-7B
NP 96.51 68.25 44.76
SP 97.78 78.09 54.29

SGP (Ours) 98.73 78.24 55.87

Following the application of fine-tuning techniques, each model
exhibited notable enhancements across all performance metrics.
These improvements are detailed in Table 4, which presents the
benchmark results for the fine-tuned models.

Our method demonstrated superior performance compared to
the baseline SP in both SyA and SeA metrics across all models,
substantiating its effectiveness. The Llama3 model shows superior
performance across all metrics, indicating its suitability for our
dataset with LoRA fine-tuning. The LlAMA3 and Qwen models
achieved 78% and 89% semantic correctness, respectively, using our
method, indicating its practical applicability.

Figure 7 synthesizes the results of the first two experiments. In
the figure, models without fine-tuning are denoted by the suffix
‘U’, while fine-tuned models are denoted by ‘F’. The performance
of fine-tuned models consistently surpasses that of non-fine-tuned
models across all inference tests. Furthermore, among the fine-
tuning methods, our SGP approach consistently achieves optimal
performance across various models.

6.5 Ablation Study
An ablation study was conducted to evaluate the contribution of
each component in our method. The results are presented in Table
5.

The experimental results demonstrate that LLMs produce the
most accurate grammars when using GP, while the highest rate of
correct semantics is achieved through SGP. These findings indicate
that incorporating contextual information of FCAV from real data
facilitates the generation of accurate grammar. However, accurate
semantic understanding still requires the incorporation of database
schema information.

7



Figure 7: Synthesizing the results

Table 5: Ablation Study Result

Model Method SyA (%) SeA (%) EMR (%)

ChatGLM3-6B
SP 93.65 49.90 40.32
GP 95.24 40.89 32.38

SGP (Ours) 94.60 53.34 42.54

Llama3-8B
SP 99.37 88.57 59.27
GP 98.41 84.12 56.51

SGP (Ours) 99.47 89.52 60.32

Qwen-7B
SP 97.78 78.09 54.29
GP 99.37 72.06 53.33

SGP (Ours) 98.73 78.24 55.87

6.6 Domain Migration Experiment
The objective of this experiment is to assess the robustness and
adaptability of our fine-tuning methodology across different do-
mains using the EduGQL dataset.

Table 6: Domain Migration Experiment Results

Model Method SyA (%) SeA (%) EMR (%)

ChatGLM3-6B SP 84.99 7.60 0
SGP (Ours) 86.77 10.27 0

Llama3-8B SP 98.47 41.50 0
SGP (Ours) 98.47 43.47 0

Qwen-7B SP 97.46 29.47 0
SGP (Ours) 91.60 32.44 0

The results show that each model exhibits a decline in grammat-
ical accuracy (between 2% and 10%) and semantic understanding
(approximately 46%) compared to their performance in the TCM
domain. Notably, the SeA achieved through the SGP method still
surpasses that of the SP method by 2 ∼ 3%.

7 LIMITATIONS
Our work is applicable to property graphs and object-oriented
modeling methods. While property graph models are widely used,

there are various graph database modeling approaches in practice.
In some scenarios, each entity is represented as a distinct label,
which our methodology does not fully accommodate. This limita-
tion arises because our approach focuses on constructing query
entities based on attribute values during dataset creation. Conse-
quently, our methodology may be less effective in environments
where entities are identified by labels rather than attributes.

8 CONCLUSION
This paper presents a robust framework for transformingNL queries
into GQL queries for GraphDBs using LLMs. Experimental results
demonstrate that our approach outperforms existing methods in
SyA, SeA, and EMR metrics and shows superior performance in do-
main migration scenarios. These findings highlight the potential of
our framework to improve GQL generation across diverse domains,
establishing a solid foundation for broader applications.
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