Accelerating the Data Cleaning Systems Raha and Baran through
Task and Data Parallelism

Fatemeh Ahmadi*
BIFOLD & TU Berlin
Berlin, Germany
f.ahmadi@tu-berlin.de

ABSTRACT

The semi-supervised approaches Raha and Baran display compet-
itive performance in general cleaning scenarios. However the ef-
fectiveness comes at high runtime costs. In this paper, we show
how we improve the runtimes of Raha and Baran by proposing a
new Dask-based parallel architecture that enhances CPU utilization.
Further, we propose a shared memory model, allowing concurrently
running workers to access shared objects, thereby reducing memory
consumption by avoiding duplicated data for each worker. Our ap-
proach demonstrates significant runtime improvements compared
to the previous versions of Raha and Baran, which are end-to-end
holistic systems.

VLDB Workshop Reference Format:

Fatemeh Ahmadi, Yusuf Mandirali, and Ziawasch Abedjan. Accelerating
the Data Cleaning Systems Raha and Baran through Task and Data
Parallelism. VLDB 2024 Workshop: 13th International Workshop on
Quality in Databases (QDB’24).

VLDB Workshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/D2IP-TUB/DaskRahaBaran.

1 INTRODUCTION

To obtain high-quality data, it is essential to ensure the data is both
syntactically and semantically correct. This requires the process
of data cleaning that aims at detecting and correcting data errors.
Manually cleaning datasets is time-intensive. Therefore, numerous
data cleaning frameworks and systems have been proposed for au-
tomating the process [1, 4, 5, 9, 11, 12, 16, 17]. Depending on their
application, these systems utilize user-defined rules and parame-
ters, or employ machine learning models with varying amounts of
training data to detect and correct errors [14].

A recent study [1] compared various data cleaning systems on
different datasets and shows that our previous cleaning systems,
Raha [12] and Baran [11], which are semi-supervised detection and
correction approaches, respectively, outperform others in terms
of effectiveness and user involvement. By design both approaches
sacrifice computation runtime to relieve the user. Hence, they fall

“Both authors contributed equally to this research.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

Yusuf Mandirali*
Leibniz Universitdt Hannover
Hannover, Germany
mandirali@dbs.uni-hannover.de

Ziawasch Abedjan
BIFOLD & TU Berlin
Berlin, Germany
abedjan@tu-berlin.de

behind some competitors in that regard. To counteract this disad-
vantage, we revised the design of both systems.

To this end, we propose new parallel architectures that leverage
the Dask [19, 20] framework to parallelize as many subprocesses as
possible. There are other alternatives, such as Spark [22] or Python’s
standard multiprocessing library. Spark is ideal for computations
across a cluster of multiple machines. Python’s multiprocessing
module can also be viable, though it operates at a lower level and
requires more manual management. Since we aim to parallelize on
a single machine and have inter-task dependencies, we chose Dask
to handle and schedule tasks. Dask provides an easier way to man-
age these dependencies and efficiently utilize available resources
without reinventing the wheel.

The challenge in parallelizing both systems lies in the fact that
each of the two systems consists of a compound of interconnected
modules and steps, with varying complexity, such as feature gen-
eration, clustering, and classification. Our strategy is to transform
these steps into embarrassingly parallel problems, minimizing de-
pendencies between concurrently running tasks and thereby avoid-
ing common issues of parallelization, such as race conditions and
deadlocks.

Another issue that can severely affect runtime performance is
the data layout and access rights to data objects. Having data ob-
jects that are both read- and writeable necessitates locks, which
creates additional overhead for concurrent workers. To address this
issue, we propose a data layout where objects are read-only while
allowing workers to create their own objects. This ensures that no
data object needs to be both readable and writable simultaneously,
thereby eliminating the need for locks and simplifying concurrency
management.

Lastly, to keep memory consumption limited and to avoid out-
of-memory situations that are common in heavily featurized data
representations, we refrain from disjoint working copies per worker.
We follow a shared memory model [7] to allow concurrently run-
ning workers to read specific read-only objects such as the input
table. The shared memory model also boosts the runtime perfor-
mance as fewer copy operations have to be used before starting a
particular task.

In short, the paper contains the following contributions:

(1) We revise the new architectures for both Raha and Baran
using the parallelization framework Dask [19, 20]. The new
architecture allows distributed computation on a single
machine, while ensuring a balanced task distribution among
workers.

(2) For both systems, we introduce a shared memory policy
with read only objects to allow simultaneous access with
fewer copy operations.

https://github.com/D2IP-TUB/DaskRahaBaran
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

(3) We examine the runtime performance and scalability of the
Dask-based architecture on different datasets. We also ana-
lyze the impact of pool size. As an example of the runtime
boost, the proposed implementation achieves a 2,7-fold in-
crease in error detection speed and a 23,55-fold increase in
error correction speed on the “Movies” dataset.

2 DASKRAHA & DASKBARAN

In this section, we present the architectural changes employed to
enhance the performance of the Raha and Baran. While the changes
for Raha are rather straight-forward and minimal, Baran requires
more elaborate adaptations. Before discussing the individual sys-
tems, it is essential to address the memory management challenges
that must be considered while parallelizing both systems. After
that, we briefly discuss the general idea behind the task scheduling
and communications in both DaskRaha and DaskBaran.

2.1 Memory Layout

Raha and Baran require the input table to be loaded into the main
memory, providing read access throughout their processes. Ad-
ditionally, both systems execute multiple steps that handle inter-
mediate results, such as cell value features in Raha or corrector
candidates in Baran. When applying parallelization, efficient mem-
ory management is crucial to avoid bottlenecks and redundant data
copies.

A naive approach to implementing both systems in parallel is to
deploy multiple independent workers, each storing a copy of the re-
quired objects, executing the process independently, and returning
the results to the primary process. For instance, when running error
detection strategies, each worker running a base detector strategy,
such as a rule violation detector, would need access to the entire
table. This results in multiple copies of the table being stored in
memory for each worker. Additionally, workers must retain the
final results for subsequent processes or store intermediate results
for later featurization.

One alternative solution is to use remote data objects and Dask
Actors, which are pointers to user-defined objects on remote work-
ers, to store shared objects such as input tables, intermediate results,
such as generated features, and states for shared access. However,
multiple remote requests can lead to sequential processing bottle-
necks, reducing the level of parallelization since the remote object
resides on a single worker, which must perform all calculations.

We propose leveraging a shared memory approach to address
this issue. This shared memory space allows multiple workers to
access read-only objects, such as the input table, and store inter-
mediate results, such as generated features, without unnecessary
data duplication. The memory layout is depicted as a part of the
communication model in Figure 1. The shared memory contains
the serialized raw input table, intermediate results, including base
detector results, feature vectors, and propagated labels, which fa-
cilitate the passing of objects to subsequent steps. Since we used
the shared memory module provided by the standard Python mul-
tiprocessing framework [7], we serialize the data into a sequence
of bytes.

ocess * P OO, D
B -
Process Scheduler Task Assignment—

Iy, &
m m
Whn

—Read Access

]

I C2
. Strategy | |Feature
Data Collectlonﬁ Profiles | [Vectors|2

Figure 1: Communication Model

<«—Write Access:

2.2 Communication Model

As illustrated in Figure 1, the main process initiates task requests
to the Dask scheduler. The Dask scheduler then distributes these
tasks among a pool of workers. These workers have read access to
the shared data objects including input table in the shared memory
space. They write the results of their processes into the shared-
memory area for later phases. For example, after features have been
generated, they will be stored in the shared memory space, and
can be accessed for the later processes such as classification. Once
the objects have been written into the shared memory space, they
become read-only, and no further process requires write access to
them. This eliminates the need for locks.

The main process collects and ultimately returns the final results.

2.3 DaskRaha

To understand the proposed improvements on our cleaning suite,
it is essential to first review the existing architectures of Raha [12]
and Baran [11]. Raha is a semi-supervised error detection frame-
work that leverages a set of automatically generated error detection
strategies to obtain a latent signal vector for each individual col-
umn value of a dataset. This vectors are used to cluster column
values based on their latent dirtiness similarity. Then, it is possible
to assign labels to individual clusters that can be propagated to
other column values within the corresponding cluster. This train-
ing set is then used to train one model per column that assesses the
correctness of the entire dataset. Figure 2)a illustrates the complete
sequence of the error detection pipeline on a given dataset.

Figure 2)c depicts the workflow of DaskRaha, emphasizing its
parallelized components. We describe each module and discuss the
differences between the current and proposed architectures.

(1) Memory-Efficient Execution of Error Detection Strate-
gies: Raha begins by automatically generating and configuring a
large set of error detection strategies. Those include strategies to
address various error types, such as rule and pattern violations,
outliers, and semantic errors. Each strategy is then independently
run on the table. The output of each strategy is the detected cells
by that strategy.

This step was already task-parallel on strategy level in Raha
and we kept it as is in DaskRaha with a slight difference regarding
memory management. Each worker is tasked with executing a
strategy and storing the results in the shared memory area. In the
original version, each worker has its own copy of the input table,
which easily can become intractable. In DaskRaha, each worker
can access the read-only table object, which significantly reduces
the memory footprint. The worker then stores the results in the
shared-memory space.

(2) Generating Feature Vectors: After executing all strategies,
a binary feature vector is generated for each cell value in the table

based on the strategy outputs. In the binary feature vector, each
strategy assigns a binary value: a one indicates that the strategy
detected the cell as erroneous, while a zero indicates that the cell is
correct. In DaskRaha this step is parallelized at the column level.
Each worker reads the results of the strategy running process, which
are the output of base detectors stored in the shared memory space,
and then stores the feature vectors in the shared memory space.

(3) Clustering Cell Values: Raha uses the generated feature
vectors to identify similar cell groups within each column. This
clustering process aims to group similarly clean or dirty cell values
into clusters so labels can be shared among similarly dirty cells. The
clustering module groups cells in each column of the input table.
Therefore, in DaskRaha, each worker is tasked with clustering an
individual column.

(4) Training and Prediction: Users label a set of sampled tuples.
Then, Raha propagates these user labels throughout the containing
clusters. In DaskRaha, sampling, labeling, and label propagation
remain unchanged as the information on all columns are necessary
for tuple selections.

Finally, Raha trains a classifier for each column using the propa-
gated and user-labeled cell values. These classifiers are then used
to predict whether the remaining cell values are erroneous. In
DaskRaha, this phase is treated similar to the clustering module.
Each column is processed separately, allowing the workload to be
parallelized.

2.4 DaskBaran

Like Raha, Baran leverages a small set of labeled tuples to train
models that predict the most fitting correction among a large set of
candidates generated by base correction models. Figure 2)b depicts
the workflow of Baran, while Figure 2)d illustrates DaskBaran. In
this paper, we focus on Baran’s online phase, and ignore its pre-
training option, which is not relevant for the online runtime.

Baran has potential for task and data parallelism in different
phases. The process of updating and fine-tuning corrector models
can be fully task-parallel as each model only needs read-access
to the data. Similarly, the process of feature generation, training,
prediction can be task-parallel as they can be run on individual
columns. Further, feature generation and prediction are parallelized
on data level as well.

(1) Fine-tuning Error Correction Models: The input to Baran
is a dirty table along with a set of detected errors.

After sampling and labeling, Baran updates its error correction
models based on the user labels. These models are simple base
correctors that generate correction candidates. Baran distinguishes
value-based models, which generates corrections by transforming
the dirty value itself, vicinity-based models, which generate cor-
rections based on co-occurrence of values in the same row, and
domain-based, which generates corrections based on values that
appear in the same column. Each error correction model proposes
a set of potential corrections and confidence scores for those for
each detected data error. Using user labels, these models change
their scores for each generated correction.

As each corrector model only reads part of the dataset it can be
updated independently in parallel, once all labels have been passed
to the models.

(2) Decoupled Two-Layer Parallel Feature Generation, Train-
ing, and Prediction: To select the best correction candidate, Baran
applies the following classification task: For each pair of data error
and generated correction candidate, it predicts whether the correc-
tion fits. Note that the same correction candidate might be proposed
by several base models with different confidence scores. Thus, each
such pair is featurized based on the confidence of base corrector
models.

Baran’s original implementation parallelizes the feature gen-
eration process at the granularity of individual data cells. This
approach, while initially promising, has a significant drawback. All
features of all data cells in the entire dataset must be generated first,
before the training and prediction phases can commence. This cou-
pling can be resolved if we combine the feature generation process,
learning, and prediction modules for each column. This way, the
system does not wait for all features of all columns to be generated
to start the next classification step. Note that some columns contain
more errors than others because of which the feature generation
might take longer. Also, since we do not need to keep all feature
vectors in memory at the same time, the memory foot print will be
smaller here than the original implementation.

In DaskBaran, for each column, the corresponding worker first
generates the feature vectors for the training set, i.e., the labeled
cells in that column. Afterward, it trains the classifier for that
column. To further accelerate the process of feature generation
and prediction for test cells, we implement an additional layer of
parallelization at the chunk level within each column. The test cells
in each column are divided into smaller data units called “chunks”
where each chunk represents a fixed number of cell values. For each
column, a new set of workers are tasked to generate features and
make predictions on the chunks. The main process then gathers all
the corrections from the workers.

Baran’s runtime depends on the number of errors in the dataset
since the system processes only these errors. Consequently, the dis-
tribution of errors among columns significantly impacts efficiency.
An imbalance in the number of errors per column can reduce speed-
up opportunity. This is problematic, especially when assigning
more than one column to workers. One might receive columns
with more errors while the others are idle and have a few errors
to be fixed. Therefore, when the number of workers is fewer than
the number of columns, we should aim for a balanced distribution
of tasks among the available workers. Initially, we distribute the
columns with the highest error ratios among all available workers,
each worker receives one column. Then, we balance the distribu-
tion by assigning columns with smaller error ratios to the workers
already handling columns with larger error ratios. This approach
prevents clustering high or low-priority tasks with specific workers
and ensures a fair assignment process.

All in all, Baran had more optimization potential due to the
coupled modules.

3 EXPERIMENTS

Our experiments address the following questions: (1) How do
DaskRaha and DaskBaran compare to the original implementa-
tion and other state-of-the-art systems in terms of speed? (2) Under
what circumstances is it advisable to employ the proposed approach,

Input Table Input Table g éeature Generation
AlB]C AlB]C ,::> Chaatng ‘::> g @ Cell A,,
Modsls 3 Wy
N e ansn
@ 2
Wn
b) Baran
Updating
Input Table (D) @ @_ Column A Input Table (D) i (D) @ . [ChurkAT]
A|B|C £\ e AlB|cC FonY Models o ﬁ\
Wi, ::> Wi . Wy, Wi . " .
. - . Updating - .
@) (o) G () | =
0 <;;n‘ Wn ﬁ;n' Whn m
o 9 Test Data Feature
G tion & Predicti
c) DaskRaha d) DaskBaran eneration & Prediction

Figure 2: Original and Proposed Workflows (The numbers are the steps that have been discussed in sections 2.3 and 2.4).

Table 1: Dataset Characteristics.

Name Number of Number of Error Rate

Rows Columns (cells)
Address 94306 12 14%
Beers 2410 11 16%
Flights 2376 7 30%
Hospital 1000 20 3%
Movies 7390 17 6%
Rayyan 1000 11 9%

and what are its limitations and strengths? Additionally, we eval-
uate the memory footprint of this new pipeline compared to the
original one. We also conduct a microbenchmark to analyze the
impact of our critical parameter, the number of workers on the
proposed architecture.

Note that the effectiveness of the proposed approach is identical
to that of the original systems, Raha and Baran, as the new design
did not alter the systems’ logic in any way.

3.1 Setup

Datasets: We run our experiments on the common six datasets—
“Address”, “Flights”, “Beers”, “Hospital”, “Movies”, and “Rayyan” that
have been used before for data cleaning [1, 11, 12, 17]. Specifications
of these datasets are detailed in Table 1 [12].

Baselines: We compared the runtime of our proposed architec-
ture against the original implementation of Raha and Baran and one
other holistic pipeline: HoloDetect + HoloClean. HoloDetect [9]
is a semi-supervised approach that employs data augmentation
techniques to address the class imbalance problem. As the sys-
tem’s original implementation is not publicly available, we utilized
a third-party implementation provided in another study [10] 1.
HoloClean [17] is an error correction system that utilizes integrity
rules, matching dependencies, and statistical signals to comprehen-
sively fix data errors [14]. We executed HoloClean with all the data

Uhttps://github.com/abmohajeri/holodetect, https://github.com/LUH-DBS/holodetect

constraints and matching dependencies provided by the dataset
owners [11, 17].

Deployment Details. : We ran all experiments on a machine
with Debian, equipped with 512 GB of memory and AMD processors
featuring 64 cores. We set the number of workers for both DaskRaha
and DaskBaran to 64, corresponding to the number of physical cores
available. We will discuss the impact of this parameter in section 3.4.
For both implementations of Raha and DaskRaha in this comparison,
we used an implementation of hierarchical clustering with single
linkage by fastcluster [13]. This implementation uses only O(n)
temporary memory instead of O(n?) for other variants such as
average or complete linkage, allowing us to perform experiments
on large datasets.

3.2 Runtime Comparisons

For the runtime comparison, we compare three pipelines:
(A) DaskRaha & DaskBaran, (B) Raha & Baran, (C) HoloDetect &
HoloClean.

Since the number of detected errors significantly affects the
runtime of the error correction modules, each pipeline uses the
complete set of errors based on the ground truth as inputs to the
corrector system to ensure fairness. For the semi-supervised sys-
tems, we allocated a labeling budget of 20 tuples per dataset for
each stage of detection and correction.

The results are in Table 2. The numbers demonstrate that the
DaskRaha and DaskBaran pipeline outperforms the pipeline of the
original implementations across all datasets. The best acceleration
is observed on the “Movies” and “Hospital” datasets, where the
new architecture is approximately 15 times faster than the original
implementation. The primary reason for this is that these datasets
have more erroneous columns: “Hospital” has 17 columns contain-
ing errors, and “Movies” has 11—consequently, the pipeline benefits
significantly from parallelization due to the columnar design of our
implementation. In contrast, the “Address” dataset, with only seven
erroneous columns, shows a speedup of around three times.

As shown in Table 2, on larger datasets such as “Address” and
“Movies”, both systems benefit from the proposed implementation.

https://github.com/abmohajeri/holodetect
https://github.com/LUH-DBS/holodetect

For the “Movies” dataset, DaskBaran contributes more substan-
tially to the speed-up. On “Address” dataset which is significantly
larger, the impact of DaskRaha on runtime is more visible. However,
on the other datasets, DaskRaha is slightly slower than the orig-
inal pipeline. This decrease highlights the importance of dataset
size when considering leveraging DaskRaha. Notably, DaskBaran
remains faster even on smaller datasets.

The pipeline with DaskRaha and DaskBaran outperforms the
HoloDetect and HoloClean pipeline. HoloDetect requires a sub-
stantial amount of time for error detection due to its reliance on
neural networks and therefore, we executed that only one time. It
took around a day to finish on the “Movies” dataset, therefore we
refrained to do the execution for “Address” dataset which is larger.
Also, HoloClean could not complete the task on our larger datasets,
“Movies” and “Address” due to memory limitations.

3.3 Memory Usage

We compare the memory usage of DaskRaha and DaskBaran to
the original implementations. Table 3 shows the results in GB. The
parallel approach requires more memory since we process multi-
ple columns simultaneously. For instance, in DaskRaha we do the
clustering on all columns simultaneously. Although it significantly
improves the runtime of our system, we have to load all features
for all cells into memory at the same time.

The Dask-based implementation of both systems demonstrate to
be an effective method for improving runtime performance. While
the parallel processing of the data increases the memory usage,
there are also cases where DaskBaran requires less memory than
HoloClean as can be seen on the “Movies” and “Address” datasets.

Table 3: Maximum Amount of Memory Usage of Each Archi-
tecture - The numbers are in GB.

Dataset | DaskRaha & | Raha & | HoloDetect &
DaskBaran Baran HoloClean
Address 175,11 40,16 -
Beers 16,08 9,09 3,17
Flights 11,89 9,46 26.88
Hospital 11,71 5,86 16,90
Movies 43,51 18,34 -
Rayyan 11,90 6,10 15,24

3.4 Parameter Impact Analysis

The pool size in DaskRaha and DaskBaran has a significant im-
pact on runtime. Therefore, we analyzed the impact of varying the
number of workers in this experiment. The results for our largest
dataset, “Address”, are in Table 4. Since the results on all other
datasets showed the same trend, we refrain from adding them.

Our machine has 64 cores, so we set the number of workers to
32, 64, and 128 and measured the runtime. The best number was
achieved using 64 workers. Using 32 workers significantly increases
the runtime, while using more cores than 64, such as 128, increases
the overhead slightly. Overall, it can be seen that the most optimal
choice in terms of runtime performance is to set the number of
workers equal to the actual number of physical cores. Therefore,
we default to 64 workers for our experiments.

Table 4: Parameter Impact Analysis - Number of Workers

#Workers | DaskRaha | DaskBaran | Total Runtime

32 1.337,41 2.408,22 3.745,62
64 1.241,45 1.859,78 3.101,24
128 1.293,24 1.891,22 3.184,46

4 RELATED WORKS

Our work relates to existing data cleaning pipelines and paralleliza-
tion frameworks.

Data Cleaning. There is a substantial body of research on data
cleaning [2, 3, 14, 18, 21]. Data cleaning involves two main steps:
error detection and error correction [12]. Error detection and correc-
tion techniques can be categorized into two groups: non-learning
techniques and learning-based approaches [14]. Non-learning ap-
proaches often require predefined rules and configurations, as well
as additional master data such as knowledge bases [6, 8, 18]. Re-
cent advancements have formulated data cleaning as a machine
learning problem, leading to notable approaches such as Raha [12],
ED2 [15], HoloClean [17], HoloDetect [9], and Baran [11]. These
learning-based approaches leverage models to detect different types
of errors and achieve higher recall compared to traditional meth-
ods [14]. However, despite their effectiveness, they are generally
slower than rule-based approaches. The results of a recent study,
REIN Benchmark [1], confirm this claim. The slower performance
is due to the need to extract different features automatically and
learn the patterns within the dataset. For example, Raha generates
features using error detector signals, cluster cells to derive samples,
and trains multiple classifiers to detect the errors [12]. HoloDetect
leverages data augmentation techniques to tackle the class imbal-
ance problem and uses neural networks to detect errors [9]. Baran
extracts different repair signals and trains classifiers to predict the
best correction for the erroneous cell at hand [11]. HoloClean in-
tegrates different signals into a factor graph model to predict the
corrections [14, 17].

Our previous systems, Raha and Baran, have demonstrated ef-
fectiveness in earlier studies [1, 18], but they still suffer from sub-
optimal runtime performance. Our novel implementation boosts the
runtime of these two systems, keeping the logic and effectiveness
untouched by leveraging task and data parallelism. We compared
our novel implementation to all aforementioned systems. Other
potential baselines, such as Horizon [18] and GARF [16] are not
included because of the following reasons. Horizon is limited to
detecting rule violations. GARF on the other hand is not included
as the experiments in the corresponding paper already showed that
it suffers from very high runtime in comparison to Baran due to its
neural architecture.

Parallelization Frameworks. Various frameworks, such as
Python’s standard multiprocessing library, Apache Spark [22] and
Dask [19, 20] can be utilized to implement distributed or paral-
lel architectures. Python’s standard multiprocessing library offers
a built-in solution for parallelism. While effective, it operates at
a lower level and demands more manual management compared
to higher-level frameworks such as Dask. Spark is a framework
designed for large-scale computations across multiple machines,
providing robust capabilities for distributed data processing. We

Table 2: Detectors and Correctors Runtime Comparison - The numbers are in seconds.

Pipelines DaskRaha & DaskBaran Raha & Baran HoloDetect & HoloClean

Datasets | Detection Correction Total | Detection Correction Total | Detection Correction Total
Address 1.241,45 1.859,78 3.101,24 5.188,06 3.320,93 8.508,99 - - -
Beers 22,15 14,88 37,03 22,04 186,83 208,87 4124,62 75,42 4.200,04
Flights 16,93 15,49 32,42 16,46 132,04 148,5 1.910,05 69,46 1.979,51
Hospital 30,18 9,19 39,37 25,40 546,35 571,75 3.597,71 146,183 3.743,893
Movies 53,83 71,05 124,88 145,42 1637,07 1.818,49 | 73.494,45 - -
Rayyan 20,03 12,48 32,51 17,21 304,05 321,26 2.647,87 169,54 2.817,41

chose Dask for our use case mainly because we needed a light- [3] Felix BieBmann, Tammo Rukat, Philipp Schmidt, Prathik Naidu, Sebastian Schel-

weight solution for a single machine rather than a shared-nothing
setup. We also considered future enhancements to enable DaskRaha
and DaskBaran to handle datasets that do not fit in memory on a
single machine. Dask data structures, such as Dask DataFrames,
can effectively manage data between disk and memory in these
scenarios.

5 CONCLUSION

In this paper, we present a new Dask-based implementation for
Raha and Baran. The proposed implementation breaks down the
modules in the original systems into embarrassingly parallel prob-
lems, solving each one while ensuring balanced distribution among
workers and eliminating data access locks. Our experiments demon-
strate that the proposed architectures significantly outperform the
original implementations in terms of speed.

A future direction is to adapt the Dask-based implementation
to handle datasets that do not fit in main memory. This adapta-
tion would further extend the applicability of our approach, mak-
ing it suitable for even more extensive and complex data cleaning
tasks. By addressing these scalability concerns, we can continue to
push the boundaries of performance and efficiency in data cleaning
frameworks, ultimately contributing to more robust and capable
data processing solutions.

ACKNOWLEDGMENTS

This project has been supported by the German Research Founda-
tion (DFG) under grant agreement 387872445. We would like to
extend our gratitude to Malte Kuhlmann for his assistance, particu-
larly in maintaining the repositories and conducting experiments
on HoloDetect. Additionally, his efforts to improve Raha’s cluster-
ing module and enhance the reproducibility of the DaskRahaBaran
project were invaluable. We also thank Marc Speckmann for his con-
tributions to refining Baran’s original source code, which improved
the overall efficiency of the project.

REFERENCES

[1] Mohamed Abdelaal, Christian Hammacher, and Harald Schoning. 2023. REIN:
A Comprehensive Benchmark Framework for Data Cleaning Methods in ML
Pipelines. In Proceedings 26th International Conference on Extending Database
Technology, EDBT 2023.

Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Thab F. Ilyas,
Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. De-
tecting Data Errors: Where are we and what needs to be done? Proc. VLDB
Endow. 9, 12 (2016).

(1]

(12]

(17]

(18]

(19]

[20

[21

[22]

ter, Andrey Taptunov, Dustin Lange, and David Salinas. 2019. DataWig: Missing
Value Imputation for Tables. J. Mach. Learn. Res. 20 (2019).

Xu Chu, John Morcos, Thab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. 2015. KATARA: A Data Cleaning System Powered by Knowledge
Bases and Crowdsourcing. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data.

Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Thab F.
Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a commodity data clean-
ing system. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013,.

Amr Ebaid, Ahmed K. Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani, Jorge-Arnulfo
Quiané-Ruiz, Nan Tang, and Si Yin. 2013. NADEEF: A Generalized Data Cleaning
System. Proc. VLDB Endow. 6, 12 (2013).

Python Software Foundation. [n.d.]. Multiprocessing Shared Memory, Python
Docs. https://docs.python.org/3/library/multiprocessing.shared_memory.html.
[Online; accessed 13-August-2023].

Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2020.
Cleaning data with Llunatic. VLDB 7. 29, 4 (2020).

Alireza Heidari, Joshua McGrath, Thab F. Ilyas, and Theodoros Rekatsinas. 2019.
HoloDetect: Few-Shot Learning for Error Detection. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference 2019.
Abolfazl Mohajeri Khorasani, Sahar Ghassabi, Behshid Behkamal, and Mostafa
Milani. 2023. Explainable Error Detection Method for Structured Data using
HoloDetect framework. In 2023 13th International Conference on Computer and
Knowledge Engineering (ICCKE). IEEE.

Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error Cor-
rection via a Unified Context Representation and Transfer Learning. Proc. VLDB
Endow. 13, 11 (2020).

Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Mad-
den, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A
Configuration-Free Error Detection System. In Proceedings of the 2019 Inter-
national Conference on Management of Data, SIGMOD Conference 2019.

Daniel Miillner. 2013. fastcluster: Fast hierarchical, agglomerative clustering
routines for R and Python. Journal of Statistical Software 53 (2013).

Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. 2021. From
Cleaning before ML to Cleaning for ML. IEEE Data Eng. Bull. 44, 1 (2021).

Felix Neutatz, Mohammad Mahdavi, and Ziawasch Abedjan. 2019. ED2: A
Case for Active Learning in Error Detection. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, CIKM 2019.
Jinfeng Peng, Derong Shen, Nan Tang, Tieying Liu, Yue Kou, Tiezheng Nie, Hang
Cui, and Ge Yu. 2022. Self-supervised and Interpretable Data Cleaning with
Sequence Generative Adversarial Networks. Proc. VLDB Endow. 16, 3 (2022).
Theodoros Rekatsinas, Xu Chu, Thab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow.
(2017).

El Kindi Rezig, Mourad Ouzzani, Walid G. Aref, Ahmed K. Elmagarmid, Ahmed R.
Mahmood, and Michael Stonebraker. 2021. Horizon: Scalable Dependency-driven
Data Cleaning. Proc. VLDB Endow. 14, 11 (2021).

Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms
and Task Scheduling. In Proceedings of the 14th Python in Science Conference.
Matthew Rocklin and Michael Broxton. [n.d.]. Dask Framework. https://www.
dask.org/. [Online; accessed 17-December-2023].

Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Bief3-
mann, and Andreas Grafberger. 2018. Automating Large-Scale Data Quality
Verification. 11, 12 (2018).

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016.
Apache Spark: a unified engine for big data processing. Commun. ACM 59,
11 (2016).

https://docs.python.org/3/library/multiprocessing.shared_memory.html
https://www.dask.org/
https://www.dask.org/

	Abstract
	1 Introduction
	2 DaskRaha & DaskBaran
	2.1 Memory Layout
	2.2 Communication Model
	2.3 DaskRaha
	2.4 DaskBaran

	3 Experiments
	3.1 Setup
	3.2 Runtime Comparisons
	3.3 Memory Usage
	3.4 Parameter Impact Analysis

	4 Related Works
	5 Conclusion
	Acknowledgments
	References

