Towards Semi-Supervised Data Quality Detection in Graphs

Rubab Zahra Sarfraz

rubabzsarfraz@gmail.com

BridgeLinx Technologies
Lahore, Pakistan

ABSTRACT

Graph databases have emerged as a powerful tool for representing
and analyzing complex relationships in various domains, includ-
ing social networks, healthcare, and financial systems. Despite
their growing popularity, data quality issues such as node dupli-
cation, missing nodes or edges, incorrect formats, stale data, and
misconfigured topology remain prevalent. While there are numer-
ous libraries and approaches for addressing data quality in tabular
data, graph-structured data pose unique challenges of their own.
In this paper, we explore an automated approach for detecting data
quality issues in graph structured data which focuses on both node
attributes and relationships. Since data quality is often governed
by pre-established rules and is highly context-dependent, our ap-
proach seeks to balance rule-based control with the automation
potential of machine learning. We investigate the capabilities of
graph convolutional networks (GCNs) and large language models
(LLMs) at detecting data quality issues using a few-shot learning
approach. We evaluate the data quality detection rates of these
models on a graph dataset and compare their effectiveness and
potential impact on improving data quality. Our results indicate
that LLMs exhibit robust generalization capabilities from limited
samples while GCNs offer distinct advantages in certain contexts.

VLDB Workshop Reference Format:

Rubab Zahra Sarfraz. Towards Semi-Supervised Data Quality Detection in
Graphs. VLDB 2024 Workshop: 13th International Workshop on Quality in
Databases (QDB’24).

1 INTRODUCTION

The rapid digitization of the world has led to the generation, storage,
and utilization of vast amounts of data every day. In order to effec-
tively utilize such a data-rich environment, it is crucial to manage
data quality meticulously to minimize irrelevant or erroneous in-
formation. To this end, graph data structures have been effectively
utilized to lay the foundation of many fields such as transportation,
genome analysis, and neuroscience applications. More recently,
they have found an interesting position as central units in model-
ing complex problems such as image detection, recommendation
systems, and sequence analysis.

In this paper, we focus on the unique challenges posed by graph-
structured data that powers many database today. Unlike traditional
databases, graph databases offer significant flexibility, often with

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

limited schemas, leading to potential issues with data validation.
The inherent flexibility of graph databases allows for dynamic and
evolving schemas, but this flexibility comes with the cost of po-
tentially introducing data quality issues that are harder to detect
and correct. The goal of this study is to find ways to automate the
detection of these data quality issues without the need to manually
inspect each node and edge, thereby enhancing the efficiency and
reliability of graph-structured data.

Data quality and corruption issues can manifest in various forms.
Investigating and capturing these issues can be a time- and compute-
intensive task with varying reliability levels. We aim to devise an
approach to facilitate the detection of such issues with limited
human intervention. For this study, we limit the scope of data
quality issues to missing, incorrect, and inconsistent data. Our
approach is based on the hypothesis that data quality is context-
dependent: for example, route estimation requires high-quality
spatial and temporal data, while the quality of textual data may be
less critical to its functioning.

We use large language models (LLMs) and graph convolutional
networks (GCNs) due to their semi-supervised capabilities, which
are advantageous in scenarios with limited labeled data. LLMs ex-
cel in few-shot learning scenarios, making them well-suited for
applications where annotated data is scarce. GCNs, on the other
hand, are inherently suited for graph-structured data due to their
ability to capture the spatial dependencies and relationships be-
tween nodes. By leveraging these models, we aim to improve the
automated detection of data quality issues in graphs.

Our contributions are as follows:

e We present a semi-supervised machine learning approach
to detect data quality issues in graph-structured data.

o We utilize LLMs and GCNs to address this specific problem,
leveraging their strengths in few-shot learning and graph
representation, respectively.

o We demonstrate promising results on a graph dataset, high-
lighting the effectiveness of our approach.

e We discuss the potential for further research in this di-
rection, exploring additional data quality dimensions and
refining our models for better accuracy and scalability.

Through our research, we highlight the importance of main-
taining high data quality in graph-structured data and show how
advanced machine learning techniques can serve as promising
solutions for automating and enhancing data quality assessment,
ultimately supporting the robust performance of graph-based sys-
tems across various applications. We make our code available to
the community?.

!https://github.com/rubabzs/graph-data-quality


https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/rubabzs/graph-data-quality

2 RELATED WORK
2.1 Data Quality

Data quality is crucial for data-driven applications, impacting every-
thing from assessment methodologies to machine learning perfor-
mance and monitoring tools. This section reviews key contributions
in these areas.

Batini et al. [1] provide a foundational survey on data quality
assessment and improvement methodologies, categorizing various
approaches and emphasizing tailored solutions for specific chal-
lenges. Some advocate for empirical methods to better understand
and improve data quality, calling for rigorous evaluation of inter-
ventions [13]. A comprehensive review of tools for data quality
measurement and monitoring by Ehrlinger and W68 [6] discusses
various tools’ strengths and weaknesses and suggests best practices
for putting them in practice.

From a systems perspective, tools like CLAMS [7] focus on en-
suring data quality in large-scale data lakes by managing hetero-
geneous data sources appropriately. Schelter et al. [14] leverage
machine learning to automate large-scale data quality verification,
and complement this with Deequ [15], an automated tool for vali-
dating data quality in machine learning pipelines, ensuring it meets
predefined standards before use.

2.2 Graph Convolutional Networks

Graph convolutional networks (GCNs) have become essential for
modeling various data problems, enabling advances across many do-
mains. Dwivedi et al. [5] benchmarked different GCN architectures,
providing valuable insights into their strengths and weaknesses
across multiple datasets and tasks, aiding in the selection of suitable
models for specific applications, including data quality measure-
ment.

Studies have aimed to enhance GCN efficiency and simplicity,
such as Wu et al. [18], which focused on reducing computational
complexity while maintaining performance, and Chen et al. [4], who
developed Simple Graph Convolutional Networks (SGC), demon-
strating how a linear model can match more complex architectures
in performance, facilitating easier interpretation and application.
We incorporate these findings by using a simple architecture in our
research.

Lastly, Garcia and Bruna [10] explored GCNs in few-shot learn-
ing, showing their effectiveness with limited training data. This is
particularly relevant for data quality tasks, where labeled data is
scarce, and GCNs’ ability to generalize from limited examples is
crucial. To our knowledge, no prior work has applied GCNs to data
quality detection tasks, which we address in this study.

2.3 Large Language Models

The integration of large language models (LLMs) into data man-
agement has shown considerable promise, transforming traditional
tasks and enhancing data quality across various applications. Borisov
et al. [2] provide a comprehensive survey on the application of deep
neural networks, including LLMs, to tabular data, offering insights
into state-of-the-art techniques and key challenges. Fernandez et al.
[9] highlight the disruptive potential of LLMs in data management,
emphasizing improvements in efficiency and accuracy.

o @

4KFGO

7L2R4

(O Review node

Product node

Figure 1: An illustration of the graph-structured data model
used for data quality assessment in our experiments. The
graph has a bipartite structure with nodes denoted by their
unique IDs and edges representing relationships between
product and review nodes.

Frameworks like Embdi [3], which generate embeddings for
relational data integration, are crucial for maintaining data quality
across disparate sources. Narayan et al. [12] examine foundation
models in automating data wrangling tasks, suggesting significant
improvements in data preparation efficiency and accuracy.

While literature on LLMs for graph-related tasks is limited,
Fatemi et al. [8] present findings on encoding graphs for LLMs,
exploring the impact of graph encoding functions and tasks on
performance. Wang et al. [16] design a graph benchmarking task
for language models, providing further insights. We build on these
works to explore LLMs’ potential in assessing data quality in graph-
structured data.

3 METHODOLOGY

To detect data quality issues in graphs, we first formalize a measure
of Data Quality Detection (DQD) which we evaluate our models
with. We then present approaches for using a small set of labeled
examples to predict detect data quality issues in an unseen data
point in a few-shot setting. The objective is to perform minimal
modifications to the models and utilize their intrinsic ability to
generalize from a small amount of data. We use evaluate two classes
of models: an off-the-shelf pre-trained large language model (LLM),
specifically GPT-4o0, and a graph convolutional network (GCN) that
we train ourselves. We experiment with different numbers of few-
shot samples and evaluate the performance of the models on the
DQD rate.

Concretely, our problem can be defined as follows: given a set of
vertices and edges (V, E) € G, we introduce data quality issues to
create a faulty version (V’,E’) € G’, where V' and E’ contain data
quality issues. We treat our predictive models as a function f and
aim to evaluate:

1 n
DQD Rate = ;f«Vi,Ei), S)



where:

G = {(V1,E1), (V2, E2), (V3, E3), ...}
G ={(V],E}D), (V},E}), (V4 ,E5),...}
S = {(V1s, E1s), (Vas, Ezs), (Vas, Ess), . . .}

1 if issue is detected

f((V{’E;)s S) = {

0 otherwise

n = number of data quality issues introduced

Our goal is to evaluate the models’ ability to accurately detect
the faulty versions of V and E given a set of good and bad samples
(Vs, Es) € S, which is a subset of the ground truth graph G’.

As an ablation study, we vary how many few-shot labeled exam-
ples are given to the models and evaluate the impact of this change
on their detection rate. Additionally, we set the scope of our study
based on some factors for simplicity. First, we restrict the types
of data quality issues to missing, incorrect, and inconsistent data.
Second, we minimize modifications to the existing models to en-
sure the focus remains on evaluating their inherent “off-the-shelf"
capabilities. In the next section, we describe our experimental setup.

4 EXPERIMENTAL SETUP

Our experiments involved converting a graph dataset into a for-
mat, corrupting some nodes and edges in the dataset, and then
performing DQD operations. We performed our experiments on a
single node Linux-based machine using only the CPU for all local
computation. All code was written in Python and we incorporated
multiple standard graph processing and machine learning libraries
to increase reproducibility. To ensure robustness, we repeated all
experiments twice and report the average in the results section
along with the variation observed. The following sections describe
the setup in detail.

4.1 Dataset

We use the Amazon Fine Food Reviews dataset [11] for our exper-
iments, which contains over a decade of reviews from the popu-
lar ecommerce website. This dataset contains comprehensive data
about the products, reviews, and the reviewing users, and is well-
suited for modeling as a graph due to the inherent relationship
between products and their reviews. The dataset spans over 10
years and comprises 74,258 product nodes, 568,453 review nodes,
and 256,059 user nodes. For our experiments, we extracted a subset
of 4,000 nodes, focusing only on product and review nodes. The
detailed features of this subset are shown in Figure 2. We prepro-
cessed the dataset from its original text file format into a graph
model and established edges between each product and its corre-
sponding reviews to accurately represent the relationships within
the data. The final model of the graph used can be seen in Figure 1.

product/productId: BOOLE4KFGO

review/userId: A3SGXH7AUHUSGW

review/profileName: delmartian

review/helpfulness: 1/1

review/score: 5.0

review/time: 130386240

review/summary: Good Quality Dog Food

review/text: I have bought several of the Vitality canned dog food
products and have found them all to be of good quality. The product
looks more like a stew than a processed meat and it smells better.
My Labrador is finicky and she appreciates this product better than
most.

Figure 2: An example of the graph attributes derived from
the Amazon Fine Foods Reviews dataset.

4.2 Data Quality Issues

After creating the graph, we introduced data quality issues in our
dataset. We corrupted 10% of our initial dataset (n=400, e=79) and
introduced the following issue types:

e Missing Node Features: We walked through the graph
and unset randomly chosen node attributes in both the
product nodes and the review nodes, e.g. setting the text
feature in review node to be blank or a product name to
None.

e Incorrect Node Features: For the numerical columns, we
added incorrect values in our dataset which were out of
bounds, e.g. replacing the correct value of the score feature
in the review node to a randomly chosen number in the
range [-100000, 100000].

o Inconsistent Node Features: We introduced inconsisten-
cies related to the formats and mismatched values, e.g. set-
ting the nodes with positive summary to have a negative
corresponding text feature in the review node. In addi-
tion, we also set some values to be numerical when the
expectation was of textual data.

¢ Inconsistent Relationships: We introduced self-loops
and misconfigured relationships in our graph to test e.g.
a review node should not be linked with another review
node, similarly a product node should not point to itself.

4.3 Crafting Samples for Few-shot Learning

To perform in-context learning, we provide the models with a small
number of labeled examples at inference time that are carefully
chosen to maximize generalizability, which is crucial in this task.
We propose an approach where models are trained on a balanced
sample of both, valid nodes and invalid nodes (in terms of attributes
and relationships). For our 4-shot input samples, we include 2 ex-
amples per node type, one valid and one invalid. Specifically, this
means providing our models with one valid product node, one in-
valid product node, one valid review node, and one invalid review
node. We show one example of an invalid review node in Figure 3.

In the 12-shot scenario, we increase the number of examples
to 3 per node type per validity status. This allows us to examine
the impact of the training data size on model performance. By
experimenting with both 4-shot and 12-shot samples, we aim to
capture the potential differences in model performance that arise



"id": "BOO1E4KFGO_A5GH6H7AUHUSGW_1303862400",
"type": "Review",
"properties": {
"userId": "A3SGXH7AUHUSGW",
"profileName": "jkhhjknmnmn",
"helpfulness": "1/1",
"score": -11115.0,
"time": "lafaadasafa",
"summary": "fajhjahjh2g8fuhaj",
"text": "None"
b
"relationships": [
{
"type": "HAS_REVIEW",
"target_id": "BOO1E4KFGO_A5GH6H7AUHUSGW_1303862400"
}
1,
"label": "Invalid"

Figure 3: An example of an invalid review node where the
score feature has an implausible value and the node is
marked accordingly with the label property.

due to variations in the amount of training data provided. This
approach helps us understand how the models generalize from a
few examples and adapt to the intricacies of graph data. It is also
pertinent to encode the data quality patterns that any user would
like to filter out from their graph in this step, as the models will
evaluate the incoming data on these samples.

4.4 Large Language Models (LLMs)

We first evaluated the ability of large language models (LLMs) for
detecting data quality issues in graph-structured data. Specifically,
we used GPT-40 where its objective was to predict whether, given
a set of reference samples, an unseen node has invalid data or not.
We encode both the samples and the graph’s nodes and edges into
text format to provide as input to the LLM and enable it to reason
over them. The results were aggregated after the predictions were
made and compared against our ground truth data to measure the
Data Quality Detection (DQD) rate. The following sections outline
this process in detail.

Prompt Engineering: To evaluate the inherent “off-the-shelf"
capabilities of the models, we designed a minimalistic prompt free
of dataset-specific details that could bias the results. We asked the
LLM to learn data quality patterns from the samples provided, use
them to predict the quality of the unseen nodes, and return its
response as an array of JSON objects, one for each input node,
containing a tuple of the node ID and the predicted label (node_id,
predicted_label). The only explicit instruction provided to the LLM
was:

"Learn the valid and invalid data quality patterns from
the samples given in the input."

Graph Encoding: To convert the node and edge data from graph
format into a textual format that can be accurately understood by an

LLM, we design a graph encoding function that maps attributes and
relationships into key-value pair representation. For each instance,
we include the node ID, type, feature values, a natural language
description of its relationships with other nodes, and its data quality
label in the following format:

Node X, Type: Product/Review

Node Features: time: "12287913", name: "Bob",
Relationships Linked: Node X is linked with Node Y
Label: Valid/Invalid

Batching: Having an LLM label one node at a time can be expen-
sive, both in terms of cost and time, as the LLM has to be provided
the few-shot examples for every input. In order to be more effi-
cient, we batched inference requests by asking the LLM to label
multiple input nodes simultaneously in the same prompt. In the
4-shot prompt, we used a batch size of 5 input nodes. For the 12-
shot prompt, we used a batch size of 2 since the few-shot examples
themselves took up a significant number of tokens in the context:

4-shot Token Size: ~350 tokens per sample
12-shot Token Size: ~2,100 tokens per sample

4.5 Graph Convolutional Networks (GCNs)

Graph convolutional networks (GCNs) are well-suited for this task
due to their ability to effectively learn from graph-structured data
with relatively limited training samples. Their semi-supervised
learning capabilities also allow them to leverage both labeled and
unlabeled data, which is greatly increases their applicability in real-
world contexts where labeled data is limited.

Graph Pre-processing: We performed multiple steps of pre-
processing to transform the graph into the appropriate format to
feed it into the GCN model. We first used the NetworkX framework?
to convert it into a format compatible with the Deep Graph Library
(DGL), which facilitates efficient computation on graph-structured
data.

We then encoded the node’s textual features as dense embeddings
using the SentenceTransformers library® which offers a unified
framework for generating high-quality embeddings that capture
the semantic meaning of the text. We use the al1-MinilLM-L6-v2
model which is based on a compressed transformer developed by
Wang et al. [17] and use it to generate vector representations for
both the few-shot examples and test nodes.

Model Training: We train a GCN on the node embeddings and
use the relationship information provided by the DGL represen-
tation. We perform a grid search over a range of hyperparameter
values, including the learning rate (0.001 to 0.01), the number of
hidden layers (5 to 7), the number of epochs (10 to 20), and the early
stopping patience (3 to 5). We used the Adam optimizer and the
categorical cross-entropy objective function. We trained our model
in two settings: one with 4-shot examples and another with 12-shot

Zhttps://networkx.org
Shttps://www.sbert.net


https://networkx.org
https://www.sbert.net

Task Type GCN LLM

4-shot 12-shot 4-shot 12-shot
Missing Node Features 77.89% 87.96% 87.50% 76.00%
Incorrect Node Features 78.02% 87.50% 94.95% 95.00%
Inconsistent Node Features 75.12% 85.30% 77.23% 76.10%
Inconsistent Relationships 82.00% 91.22% 46.63% 46.80%

Table 1: Comparison of GCN and LLM on various tasks with different few-shot configurations.

 — W H Y]

101 3 GCN

0.8

0.84 0.82 0.85

DQD Rate
o
>

o
>

0.2

0.0

4-shot 12-shot
Shots

Figure 4: DQD Rate comparison between LLM and GCN with
4 and 12 few-shot learning samples.

examples. This approach allowed us to evaluate the model’s perfor-
mance with varying amounts of training data, and we performed
this evaluation on a separate test set.

The training process can be summarized as follows:

e Graph Conversion: Transform the NetworkX graph into
a DGL graph.

e Feature Encoding: Use SentenceTransformers to generate
embeddings for node features.

o Model Initialization: Set up the GCN model architecture
with the appropriate hyperparameters.

e Training: Train the model using a categorical cross-entropy
loss function and the Adam optimizer.

e Evaluation: Evaluate the model’s performance on a sepa-
rate test set and measuring the detection rate on it.

Evaluation We evaluated the GCN model by comparing its
predictions against the ground truth labels. The primary metric for
performance assessment was the Data Quality Detection (DQD)
rate, which was defined in Section 3. The results were aggregated
and analyzed to determine the effectiveness of the GCN in detecting
data quality issues in graph-structured data.

5 RESULTS

Our major takeaway from the experiments was the superior ability
of LLMs to generalize from a few examples compared to GCNs.
This makes LLMs particularly suitable for consistently evaluating
data quality with minimal training data. However, if a sufficient
amount of labaled data is available then GCNs can be employed
instead. Below, we summarize our key findings:

Performance Comparison: The Data Quality Detection (DQD)
rate for 4-shot LLMs came out to be 84%, which is notably higher
compared to 73% for GCNs as shown in Figure 4. This highlights
the effectiveness of LLMs in learning from very limited examples.
It is also important to mention here that the loss for 4-shot GCN
dropped from 0.7086 to 0.4100 while the validation accuracy fluctu-
ated between 90% to 95%, which indicates that although the model
is learning, it has the potential for overfitting. We recommend em-
ploying techniques like regularization or early stopping to prevent
this.

Impact of Few-shot Examples: For 12-shot GCNs, the DQD
rate improved significantly to 85%, slightly exceeding that of LLMs,
indicating that additional training samples greatly increase the
model’s performance. However, the same cannot be said for the
LLMs as their performance did not improve, which may be due to
the prompt becoming very long.

Task-Specific Performance: A detailed breakdown of DQD
rates per task and issue type presented in Table 1 shows that LLMs
outperformed GCNs on certain tasks, while GCNs performed better
on others. It’s interesting to note that LLMs achieved an impres-
sive rate of 95% on detecting incorrect node features, whereas GCN
showed significantly higher detection rate of 91.22% for detecting in-
consistent relationships. These inconsistent relationships included
wrong self-loops as well as wrongly introduced relationships, e.g.
replacing HAS_REVIEW with REVIEW_OF. LLMs performed signifi-
cantly worse on this specific task, which requires further probing.
One of the potential reasons could be LLMs not being able to capture
the overall structure of the graph like GCNs do.

These findings underscore the importance of selecting the ap-
propriate model based on the specific requirements and constraints
of the data quality evaluation task.

6 DISCUSSION

In this section, we address three critical aspects of detecting data
quality with our framework: the deteriorating performance of LLMs
with increased few-shot examples, the selection criteria for models,
and crafting effective samples for few-shot learning.
Deteriorating Performance of LLMs: The observed decline
in the LLM’s performance as we go from 4 to 12 few-shot examples
warrants further investigation. It is possible that the increased
prompt length is testing the limits of the LLMs’ context window,
which suggests that a delicate balance between maximizing in-
context examples and preventing an overly large prompt is needed.
Future experiments with alternative graph encoding functions may
help in this regard by keeping only relevant information for each



node. It is also reasonable to assume that with a more complex
dataset, a richer representation of good and bad quality samples
might be required. In such scenarios, GCNs might be preferable,
particularly if a labeled dataset is available. An alternative approach
to mitigate performance barriers could be fine-tuning the LLMs so
they can learn from more examples without burdening the prompt.

Selection Criteria for Models: The choice of model should be
guided by the specific task requirements, budget constraints, and
available resources, particularly in terms of manual effort. While we
tried to evaluate the potential of using advanced machine learning
algorithms to reduce the manual effort at scale, if a simple rule-based
approach can provide deterministic results with less labor-intensive
work then it makes sense to opt for it instead. Monetary cost is
another factor: closed-source LLMs can become fairly expensive
to use compared to GCNs but demonstrate superior off-the-shelf
performance with less manual intervention, especially when it
comes to detecting issues with node features. GCNs on the other
hand require more manual effort for model training, validation,
testing, and hyperparameter tuning.

Crafting Effective Samples for Training: Regardless of the
model chosen, the quality of few-shot examples is crucial in helping
them generalize better. High-quality samples should comprehen-
sively represent the expected data quality issues to to help detect
data quality issues on unseen data accurately. Simultaneously, the
few-shot examples must also be balanced to prevent any biases
from impacting the models’ predictions. While crafting new sam-
ples for every node type may appear to be a complex operation,
this approach can be especially useful when working at scale where
manual effort needs to be minimized.

7 CONCLUSION & FUTURE WORK

Managing data quality in graph-structured datasets is crucial, whether
in offline databases or real-time analysis systems. In this paper, we
explored the potential of semi-supervised learning for automating
data quality assessment. By leveraging samples of both good and
bad data, we evaluated the performance of large language models
(LLMs) and graph convolutional networks (GCNs) in a few-shot set-
ting. Our preliminary findings show a promising potential in further
research on this topic. While LLMs excel in off-the-shelf data qual-
ity assessment, GCNs demonstrate significant performance gains
when more labeled data is available and when graph relationships
are needed to be tested. Additionally, we show that context can be
effectively encoded with machine learning to detect data quality
issues with minimal manual intervention. The choice of model is
crucial in obtaining good results and should be informed by the
specific graph and task at hand, as evidenced by our experiments.
Since both approaches have their limitations, the decision must
also factor in the monetary costs, time constraints, and technical
capability needed for a particular task. Future work in this direction
should focus on several key areas to further improve automated
data quality assessment in graph databases:

o Extensive Experiments: Perform further evaluations on
bigger datasets with more detailed graph-structured issues.

o Fine-Tuning LLMs: Investigate the impact of fine-tuning
LLMs on domain-specific graph data to improve their per-
formance.

e Graph Encoding Functions: Explore more methods to
encode graphs for LLMs and observe their impact on the
models’ performance.

e Hybrid Models: Explore hybrid models that combine the
strengths of LLMs and GCNs to leverage the benefits of
both approaches.

e Real-Time Analysis: Extend the current approaches to
real-time data quality monitoring and correction in dy-
namic graph databases.

We hope that this research encourages the community to explore
automated methods for managing data quality in graph-structured
data, ultimately leading to more robust and reliable data-driven
systems.

REFERENCES

[1] Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. 2009.
Methodologies for data quality assessment and improvement. ACM computing
surveys (CSUR) 41, 3 (2009), 1-52.

[2] Vadim Borisov, Tobias Leemann, Kathrin Sef3ler, Johannes Haug, Martin Pawel-
czyk, and Gjergji Kasneci. 2022. Deep neural networks and tabular data: A survey.
IEEE Transactions on Neural Networks and Learning Systems (2022).

[3] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2021.
Embdi: generating embeddings for relational data integration. In Proceedings of
the 29th Italian symposium on advanced database systems, SEBD. 5-9.

[4] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International conference on
machine learning. PMLR, 1725-1735.

[5] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. 2023. Benchmarking graph neural networks.
Journal of Machine Learning Research 24, 43 (2023), 1-48.

[6] Lisa Ehrlinger and Wolfram W68. 2022. A survey of data quality measurement
and monitoring tools. Frontiers in big data 5 (2022), 850611.

[7] Mina Farid, Alexandra Roatis, Ihab F Ilyas, Hella-Franziska Hoffmann, and Xu
Chu. 2016. CLAMS: bringing quality to data lakes. In Proceedings of the 2016
International Conference on Management of Data. 2089-2092.

[8] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. 2023. Talk like a graph:
Encoding graphs for large language models. arXiv preprint arXiv:2310.04560
(2023).

[9] Raul Castro Fernandez, Aaron J Elmore, Michael J Franklin, Sanjay Krishnan, and
Chenhao Tan. 2023. How large language models will disrupt data management.
Proceedings of the VLDB Endowment 16, 11 (2023), 3302-3309.

[10] Victor Garcia and Joan Bruna. 2017. Few-shot learning with graph neural net-
works. arXiv preprint arXiv:1711.04043 (2017).

[11] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher Ré.

2022. Can foundation models wrangle your data? arXiv preprint arXiv:2205.09911

(2022).

Shazia Sadiq, Tamraparni Dasu, Xin Luna Dong, Juliana Freire, Thab F Ilyas,

Sebastian Link, Miller J Miller, Felix Naumann, Xiaofang Zhou, and Divesh

Srivastava. 2018. Data quality: The role of empiricism. ACM SIGMOD Record 46,

4(2018), 35-43.

Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biess-

mann, and Andreas Grafberger. 2018. Automating large-scale data quality verifi-

cation. Proceedings of the VLDB Endowment 11, 12 (2018), 1781-1794.

Sebastian Schelter, Philipp Schmidt, Tammo Rukat, Mario Kiessling, Andrey Tap-

tunov, Felix Biessmann, and Dustin Lange. 2018. Deequ-data quality validation

for machine learning pipelines. (2018).

[16] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and
Yulia Tsvetkov. 2024. Can language models solve graph problems in natural
language? Advances in Neural Information Processing Systems 36 (2024).

[17] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
2020. Minilm: Deep self-attention distillation for task-agnostic compression of
pre-trained transformers. Advances in Neural Information Processing Systems 33
(2020), 5776-5788.

[18] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861-6871.

[12

(13

[14

[15


http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Quality
	2.2 Graph Convolutional Networks
	2.3 Large Language Models

	3 Methodology
	4 Experimental Setup
	4.1 Dataset
	4.2 Data Quality Issues
	4.3 Crafting Samples for Few-shot Learning
	4.4 Large Language Models (LLMs)
	4.5 Graph Convolutional Networks (GCNs)

	5 Results
	6 Discussion
	7 Conclusion & Future Work
	References

