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ABSTRACT
Compute engines require thorough and continuous testing where

synthetic benchmarks or hand-crafted queries and data sets are not

enough, yet accessing customer data and queries either is impos-

sible or brings a big burden of user data protection. At Meta, we

build SynQB - a query bank for compute engine testing that lever-

ages privacy-compliant production-like synthetic data with good

data quality, generated by a carefully designed differentially-private

synthetic data generation (DPSDG) algorithm. This solution solves

our common pain points in testing by enabling test coverages for

different compute engines, query operators and workloads and facil-

itating various correctness and performance regression detections.

As a result, SynQB greatly improves our compute engine release

confidence and enhances the reliability of our data warehouse.
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1 INTRODUCTION
Compute engines are critical in data-driven organizations, espe-

cially when large amounts of data need to be processed to generate

insights and support decision-making. As such, they require thor-

ough and continuous testing to ensure correctness, performance

and reliability. As in any other domain, simulating realistic work-

loads during testing helps with the proactive discovery of bugs and

inefficiencies before they hit the customer. A big challenge when

testing compute engines is that database vendors often do not have

access to customer data and queries, or are not allowed to make

copies of these outside of the customers environment. To address

this challenge, vendors have historically relied on one or both of

the following: synthetic benchmarks or hand-crafted queries and

data sets to emulate a customer environment. There is a variety
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of synthetic query and data generators attempting to create a true

representation of real customer workloads, including TPC-H and

TPC-DS among others. Those however are only a start, as they

fail to represent realistic customer workloads. Another approach

taken by database vendors is to sample customer queries and work-

loads and use these for testing. While this provides a much more

realistic test bed and removes many of the limitations of testing

with synthetic benchmarks, it has limited applicability as it requires

customers to approve using their data and queries in a test envi-

ronment, and puts a big burden on the database vendor to ensure

customer data is protected. At Meta, preserving user data privacy is

critical and tables are subject to strict restrictions on user access, as

well as data retention policies. This presents a challenge to testing

with real workloads.

We built SynQB to solve the challenge of testing realistic work-

loads in a privacy compliant way. SynQB is a query bank framework

for compute engine testing that leverages synthetic data generation

(SDG) that provides production-like synthetic data for testing. SDG

is an emerging technique that generates simulated data with simi-

lar statistical properties and characteristics of the real data while

protecting the sensitive information of each individual user. It was

noted by the National Science and Technology Council a "key tech-

nical approach for privacy-preserving data sharing and analytics"

[12]. In particular, our designed SDG algorithm is protected by

differential privacy (DP) [4, 5], a state-of-the-art privacy standard

that guarantees the identification of a specific user is technically

impossible. The production-like and privacy-compliant synthetic

data are of high data quality, solving our common pain points in

testing by enabling test coverage for different compute engines,

query operators and workloads and facilitating detection of cor-

rectness and performance regressions. As a result, SynQB greatly

improves our compute engine release confidence and enhances the

reliability of our data warehouse.

In light of prior work, our contributions are as follows. First, we

design and implement the system architecture of SynQB, which

includes a creation workflow where production queries are rewrit-

ten, production-like privacy-compliant synthetic tables are gener-

ated, and a usage suite is generated which incorporates various

correctness and performance regression detections. Second, we

design a generic differentially-private synthetic data generation

(DPSDG) algorithm for compute engine testing, which handles

user-identifiable information (UII) and user features differently, and

can also be parallelized across multiple machines and CPUs. Third,
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through evaluations we validate that SynQB generates high-quality

synthetic data that provide good signals to compute engine testing.

2 RELATEDWORK
2.1 Compute Engines at Meta
Presto [16] is a distributed SQL query engine used for low-latency

interactive workloads as well as long-running ETL pipelines involv-

ing exabyte-scale data volumes at Meta. It is widely used by teams

and systems across the company for diverse analytical use cases

such as business intelligence, machine learning, feature engineering,

experimentation platforms etc.

In recent years,Meta has successfully implemented several Presto

evolutions like Presto-on-Velox and Presto-on-Spark, which can be

seen as extensions of the classic Presto engine. These engines inte-

grate Presto with other big data processing technologies: Apache

Spark in the case of Presto-on-Spark, and Velox vectorized execu-

tion engine [13] for Presto-on-Velox to achieve enhanced query

performance, reliability and scalability for specific data analytics

workloads. One noteworthy aspect is that these engines all share

the same Presto SQL dialect syntax and semantics. The unified lan-

guage interface, in addition to offering a consistent user experience

and reducing user friction, has helped improve the development of

SynQB. This is achieved by promoting query bank reusability and

seamless cross-engine verification as queries designed for Presto

can easily be adapted to run on other engines sharing the same

interface.

In addition to Presto, we have also integrated SynQB into other

compute engines, such as Spark, by leveraging shared components.

This approach allows us to seamlessly upgrade to newer versions of

Apache Spark while ensuring that both the production version and

the new version produce consistent results without any correctness

or performance regressions. We are committed to expanding our

coverage and aim to consolidate our testing solutions, with the goal

of onboarding SynQB across all compute engines within Meta’s

data warehouse.

2.2 Compute Engine Testing
Presto Verifier

1
is an open-source testing tool used for executing

queries and ensuring their correctness by comparing the results

with a control run. Typically, the control side represents the stable

production environment while the test side represents the release

candidate environment. This process involves checking the con-

sistency of the checksums generated by both query results: any

discrepancies with deterministic queries indicate correctness re-

gressions. However, a potential drawback of utilizing Presto Verifier

is the production data source may change overtime or even get

removed entirely, resulting in unreliable and low-signal test results.

SnowTrail [21] is Snowflake’s testing framework that leverages

its time travel capability to execute queries at predefined times-

tamps, thereby ensuring data consistency. However, this framework

faces challenges due to constantly evolving schema or data changes

that may render original queries ineffective overtime.

SynQB addresses this concern by employing reliable, production-

like, and privacy-compliant synthetic data, thereby minimizing data

1
https://prestodb.io/docs/current/admin/verifier.html

variability and providing a more robust foundation for effective

and high signal testing, encompassing both correctness and perfor-

mance regression detections. This method offers a cleaner solution

compared to the previous approaches. Besides, SynQB offers advan-

tages by not negatively affecting the customers’ production traffic

in two key aspects: 1) By minimizing the necessity for control side

runs on the production cluster; 2) By limiting the requirement for

both control and test sides to utilize customer production data.

2.3 Synthetic Benchmarks
There is a long history of synthetic benchmarks for database testing

with a large focus on performance testing. The Transaction Process-

ing Council (TPC)
2
maintains a number of benchmarks for various

domains, including TPC-C, TPC-H, TPC-DS, and the more recent

TPCx-AI [3]. In the data analytics space TPC-H and TPC-DS are the

main benchmarks. They collectively feature a little over 120 queries

and provide a data generator to produce sample data for testing.

While these are often a good start, synthetic generators fall short

in modeling true customer workloads. For example, neither TPC-H

or TPC-DS support complex data types such as arrays or maps, or

test for operations on these. In addition, the research community

has contributed a number of proposals for synthetic generators,

including schema- and query-aware generators [6, 9, 14, 15], but

these proposals do not necessarily have privacy in mind.

2.4 DPSDG
There are a wide variety of works designing SDG algorithms with

good utility under DP guarantee. Based on the underlying model,

they can be split into two main categories: 1) Marginal-based
models (such as AIM [10] , MWEM-PGM [11] and DP Gaussian

Copula Kendall [8]) measure the marginal distributions of the input

dataset with DP guarantee, and then generate synthetic data that

comply with the marginal distributions; 2) GAN-based models
(such as DPGAN [20] , DP-CGAN [18] and PATE-GAN [7]) use

differentially-private stochastic gradient descent (DPSGD) method

[1] to train a generative adversarial net (GAN), which consists of

a generator for synthetic data. In most of these works, the utility

metrics of synthetic data were defined as marginal distribution,

pairwise correlation and the accuracy of machine learning inference

of the synthetic data, etc. A comprehensive comparison for these

metrics is conducted in [17].

To the best of our knowledge, this paper is the first work to con-

sider the quality of synthetic data in the context of compute engine

testing, which is defined as synthetic data’s ability to accurately

reflect the performance and behavior of compute engines compared

to production data. Key aspects include 1) Query performance:
Testing with synthetic data should replicate the performance met-

rics of testing with production data, such as query execution time

and resource utilization. In particular, the accurate representation of

flexible and nested data types, such as maps and structs, is crucial in

machine learning and advanced analytics, as modern data systems

often use sophisticated data structures to encapsulate rich, multi-

dimensional information. 2) Engine feature testing: Testing with

synthetic data should activate specific features of compute engines

and include edge cases, thereby providing comprehensive testing

2
https://www.tpc.org/
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coverage. 3) Reproducibility of results: Testing with synthetic

data should produce consistent results and performance metrics

across various environments and configurations.

3 SYSTEM ARCHITECTURE
In this chapter we first introduce the creation workflow of SynQB

in Sec. 3.1 and then the corresponding usage suite in Sec. 3.2. The

advantages of SynQB are highlighted in Sec. 3.3.

3.1 SynQB Creation Workflow

Query 
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Query 
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Query 
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Figure 1: SynQB creation workflow. Queries are selected from
production workload and rewritten with generated privacy-
compliant and production-like tables.

The SynQB creation workflow, as illustrated in Fig. 1, encom-

passes the following three steps.

Query selection. The source of SynQB is a production query

pool. We adopt a query selector with various selection criteria based

on the coverage requirements. There are two types of coverage we

consider: 1) Generic code coverage, which further encompasses

several major dimensions, such as coverage of different Presto oper-

ators including TableScan, Join, Aggregation, TableWriter, etc. and

coverage of different data structures including map, array, struct,

JSON, etc.; 2) Important workloads coverage, such as company-

wide critical dashboards, ads experiments workloads, etc.

Query rewriting and synthetic table generation. A selected

query will then be parsed by a query parser, which extracts the pro-

duction table names and produces the corresponding query syntax

tree. For each production table, we leverage a DPSDG algorithm to

generate a production-like and privacy-compliant synthetic table.

The algorithm takes two steps: 1) a fit step that trains a compressed

model𝑀 from the input production table 𝐷 with (𝜖, 𝛿)-DP (defined

in Sec. 4.1) guarantee, denoted as

𝑀 =DPSDG-Fit(𝐷 ; 𝜖, 𝛿), (1)

and 2) a generate step that produces a synthetic table 𝐷syn with

𝑁syn number of rows according to the model𝑀 , denoted as

𝐷syn =DPSDG-Gen(𝑀, 𝑁syn). (2)

The algorithm behind these two steps will be discussed in details

in Sec. 4.2. Such two-step process enables parallelized generation

through vertical scaling and horizontal scaling. After synthetic table

generation, the query will also be rewritten with the original query

syntax tree and the new synthetic table names.

Query and synthetic table persistence. The rewritten query

and the synthetic tables will be added to the SynQB. The query will

also be run with a stable version of Presto, and then the checksum

of the output will be persisted as the baseline, which can be used

in the future test runs for correctness regression detection.

3.2 SynQB Usage Suite
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Figure 2: SynQB usage suite. SynQB can be used to detect
various kinds of regressions.

As shown in Fig. 2, SynQB is mainly used to detect regressions,

including correctness and performance regressions.

Correctness regression detection. For compute engines, the

most important requirement is to guarantee that results are correct.

Presto, Presto-On-Velox, and Presto-On-Spark all share the same

SQL interface, meaning that the same query is expected to work

on these engines interchangeably. Therefore, we use the same test

query to not only verify continuous releases for each compute

engine itself, but also cross check each other. For example, while

developing Presto-on-Velox, we compare its query results with

baseline result generated by stable Java-based Presto, which has

not only exposed correctness issues but also has helped identify

missing functionality in the new engine.

Performance regression detection.Queries and tables created
for correctness regression detection can also be used for perfor-

mance regression detection. By using immutable synthetic data

and a consistent testing environment, we gather performance re-

sults that provide stronger signals than traditional shadow testing

solutions and are more representative of our workload than indus-

try benchmarks. The key strategy here is to establish a consistent

and trustworthy baseline, which facilitates effective and meaning-

ful regression detection analysis. To accomplish this, we run tests

multiple times per day across releases, recording key metrics for

each query, such as CPU usage, memory usage, and execution time.

Based on this high signal setup, for major upgrades and optimiza-

tion, we also conduct A/B testing to measure the improvements and

avoid accidental regressions. This approach allows us to compare

the performance of different versions under controlled conditions,

ensuring that enhancements deliver the expected benefits.

3.3 Highlights
We highlight some advantages of our SynQB as follows.

Sustainable testingwith synthetic data.To ensure production-
like quality and immutability for sustainable testing purposes, we

generate privacy-compliant synthetic data. SynQB transforms pro-

duction queries to use these immutable test datasets as inputs. This

approach addresses the issue of unreliable data sources from the

ground up, enabling us to develop a sustainable and high-signal

test framework.
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Early signals. From daily testing results, we have proactively

prevented correctness regressions from slipping into production,

effectively averting potential data corruptions. Furthermore, SynQB

offers expedited feedback compared to conventional production

shadow testing solutions. This efficiency is achieved through the

manipulation of synthetic test data sizes. We use smaller data sets

for correctness testing to decreases the runtime of end-to-end test-

ing. Additionally, the short execution time enables the integration

of SynQB into the pull-request landing process. This enhancement

can accelerate the testing cycle and facilitate the early detection and

resolution of bugs. Developers can receive immediate feedback on

their changes, promoting a more efficient and iterative development

process.

Reliable performance regression A/B testing framework.
The use of synthetic data fundamentally reduces variability at the

data layer, thereby providing a more robust foundation for reli-

able testing. Our performance regression detection framework is

particularly relevant for projects that involve significant changes

or upgrades, such as the introduction of new file formats in data

warehouses, SQL query optimizations, and major library upgrades.

By using this approach, we ensure that each enhancement not only

meets the intended functionality improvements but also maintains

or enhances overall system performance.

Historical failed queries. We systematically collect queries

that had production regressions and incorporate them into a historical-

failed queries test suite. This suite is then used for verifying future

releases, ensuring that previously encountered issues are adequately

addressed and do not recur.

Flexible and pluggable testing framework. SynQB is highly

extensible, facilitating integration with each compute engine’s test

runner. Presently, it supports a range of engines including Presto,

Presto-on-Velox, and Spark. Beyond compute engines, SynQB’s

synthetic data can also be directly utilized for flexible integration

testing and library testing across different platforms.

Minimized Regional Capacity Limitations. In Meta’s data

warehouse, queries are run on servers geographically near to where

the data is stored to ensure low latency and network IO. As such,

shadow testing solutions that run on real customer data require test

environments in all regions where customer data may be located,

which is not always feasible. In contrast, SynQB employs synthetic

data that is not bound by regional constraints since the data can

be automatically replicated to any region. This flexibility makes

it possible to leverage any available test cluster for testing any

workload.

4 DPSDG DEEP DIVE
In this chapter, we first briefly introduce some basic definitions and

theorems of DP in Sec. 4.1, and then give an in-depth explanation

of our DPSDG algorithm for SynQB in Sec. 4.2.

4.1 DP Basics
Consider a dataset𝐷 with 𝑁 records (i.e., rows for a tabular dataset).

We use D to denote the domain of 𝐷 .

Next we formally define DP, which protects user-level privacy

based on the notation of neighboring datasets, i.e., a pair of datasets

which differ in just one record.

Definition 4.1 (Differential Privacy (DP) [5]). A randomized al-

gorithm M : D → R is said to satisfy (𝜖, 𝛿)-DP if ∀𝐷, 𝐷′ ∈ D
s.t. they are neighboring datasets (denoted by 𝐷 ∼ 𝐷′

), and any

possible outcome S ⊆ R, we always have
Pr(M(𝐷) ∈ S) ≤ 𝑒𝜖Pr(M(𝐷′) ∈ S) + 𝛿. (3)

Essentially, with DP guarantee, one cannot readily differentiate

whether the input of algorithmM is𝐷 or𝐷′
, due to the randomness

of the algorithm. The combination (𝜖, 𝛿) is referred to as privacy

budget, which measures the privacy level of the algorithmM.

Next, we introduce subsample procedure for dataset 𝐷 and what

it implies under the context of DP.

Definition 4.2 (Subsample Procedure [19]). For dataset 𝐷 with 𝑁

records, the subsample procedure selects a random dataset �̃� from

the uniform distribution over all subsets of 𝐷 of size �̃� . The ratio

𝛾 := �̃� /𝑁 is defined as the sampling parameter of the subsample
procedure.

Theorem 4.3 (Differental Privacy with subsampling[19]).

IfM is (𝜖, 𝛿)-DP, thenM◦subsample is (log(1+𝛾 (𝑒𝜖 −1)), 𝛾𝛿)-DP.

According to the above theorem, if we target at (𝜖, 𝛿)-DP, then
we can apply an algorithmM with only (log(1+ 1

𝛾 (𝑒
𝜖−1)), 𝛿/𝛾)-DP

to the subsampled dataset �̃� as the input.

Below we introduce two widely-used properties of DP.

Theorem 4.4 (Seqential Composition[5]). If randomized al-
gorithmM𝑖 : D → R𝑖 satisfies (𝜖𝑖 , 𝛿𝑖 )-DP, ∀𝑖 ∈ {1, 2, · · · , 𝑘}, then
randomized algorithm M(𝐷) ≜ (M1 (𝐷),M2 (𝐷), · · · ,M𝑘 (𝐷))
satisfies (∑𝑖 𝜖𝑖 ,

∑
𝑖 𝛿𝑖 )-DP.

Theorem 4.5 (Post Processing[5]). For randomized algorithm
M : D → R and algorithm 𝑔 : R → G (either randomized or
deterministic), ifM is (𝜖, 𝛿)-DP, then 𝑔 ◦M is also (𝜖, 𝛿)-DP.

Lastly, we introduce a variant of Gaussian mechanism which pro-

tects a deterministic function with DP by adding Gaussian noises.

Theorem 4.6 (Analytic Gaussian Mechanism[2]). Analytic
Gaussian mechanism is a (𝜖, 𝛿)-DP mechanism that adds Gaussian
noise to the result of a sensitive deterministic function 𝑔 : D → R𝑝 :

M(𝐷) = 𝑔(𝐷) + 𝜎N(0, I𝑝 ) (4)

where 𝜎 is the scale of the Gaussian noise that satisfies

Φ(
Δ𝑔

2𝜎
− 𝜖𝜎

Δ𝑔
) − 𝑒𝜖Φ(−

Δ𝑔

2𝜎
− 𝜖𝜎

Δ𝑔
) ≤ 𝛿 (5)

where Φ is the CDF of the standard univariate Gaussian distribution
and Δ𝑔 ≜ sup𝐷∼𝐷 ′ ∥𝑔(𝐷) − 𝑔(𝐷′)∥ is the 𝐿2-sensitivity of 𝑔.

4.2 DPSDG Algorithm
We notice that a user dataset generally contain two categories of in-

formation: 1)User features, i.e., the demographics of an individual,

such as country, gender, age, etc; and 2) UII, i.e., the information

can be used to directly identify a specific user, such as user ID,

phone number, name, etc.

An implicit assumption of most prior works is that releasing the

values of the columns (e.g., users are from these countries: USA and

Canada) is not risky, but the distributions of the columns (e.g., 70%

and 30% of the users are from USA and Canada, respectively) is
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Table 1: Split of Dataset 𝐷

Feature Columns (𝐷
ft.
) UII Columns (𝐷uii)

Country Gender · · · User ID Name · · ·
USA Male 1001 John

Canada Female 1002 Alice

Algorithm 1: Differentially-Private Synthetic Data Gener-
ation for feature columns DPGCKendall

Input: 𝐷
ft.
, 𝜖 , 𝛿

Output: 𝐷
ft., syn

1: procedure DPGCKendall-Fit(𝐷
ft.
; 𝜖, 𝛿)

2: Flatten the structural columns and then discretize the

continuous columns

3: Split the privacy budget into 𝜖1, 𝛿1 and 𝜖2, 𝛿2, s.t. 𝜖1 + 𝜖2 = 𝜖 ,

and 𝛿1 + 𝛿2 = 𝛿

4: Compute the empirical 1-dimensional marginal distribution

𝐹
ft.

and Kendall’s 𝜏 correlation coefficient matrix Σ𝜏
ft.

of 𝐷
ft.

5: Apply analytic Gaussian mechanism to 𝐹
ft.

and Σ𝜏
ft.
, making

them (𝜖1, 𝛿1)-DP and (𝜖2, 𝛿2)-DP, respectively
6: Estimate the Pearson’s correlation coefficient matrix Σ

ft.

7: return𝑀
ft.

= (𝐹
ft.
, Σ

ft.
)

8: procedure DPGCKendall-Gen(𝑀
ft.
, 𝑁syn)

9: Sample 𝐷
ft., syn

with 𝑁syn samples that comply with 𝐹
ft.
,Σ

ft.

10: Inverse transform the discretized continuous columns and

then flattened structural columns of 𝐷
ft., syn

11: return 𝐷
ft., syn

sensitive and hence should be protected by DP. For feature columns,

such assumption normally makes sense, because it is quite common

that a non-trivial number of people have the same demographics.

However, these prior works didn’t consider UII, whose values (e.g.,
there exists a user with ID 1001) are inherently very sensitive, and

thus should be handled differently.

Therefore, in this paper, as illustrated in Table 1, we split 𝐷

vertically: 𝐷 = (𝐷
ft.
, 𝐷uii), where 𝐷ft.

and 𝐷uii are datasets with

feature columns and UII columns, respectively. In the following

sections, we will apply different DPSDG algorithms to 𝐷
ft.
and 𝐷uii.

In particular, we carefully designed a DPSDG algorithm for UII such

that we can preserve the distribution of UIIs under DP, while the

corresponding values will not be leaked.

DPSDG Algorithm for feature columns. Our DPSDG algo-

rithm for feature columns is presented in Algorithm 1, which is

largely based on the DP Gaussian Copula Kendall
3
from [8], with

some modifications. For the fit step, in line 2, we first flatten the

structural columns and discretize the continuous columns, which

is because DP Gaussian Copula Kendall, as a marginal-based mech-

anism, requires the input to be unnested and discretized in order

to compute the discrete marginal distribution; Next, in line 3-6,

we split the privacy budget and then compute the noisy empirical

1-dimensional marginal distribution 𝐹
ft.
and Pearson’s correlation

3
DP Gaussian Copula Kendall largely preserves the 1- and 2-dimensional distributions

of the production dataset, which we find is generally good enough for compute engine

testing.

Algorithm 2: Differentially-Private Synthetic Data Gener-
ation for UII columns DPUII

Input: 𝐷uii, 𝜖 , 𝛿

Output: 𝐷uii, syn

1: procedure DPUII-Fit(𝐷uii; 𝜖, 𝛿)

2: Compute the second-order histogram 𝐻uii of 𝐷uii

3: Apply analytic Gaussian mechanism (Theorem 4.6) to 𝐻uii,

making it (𝜖, 𝛿)-DP
4: return𝑀uii = 𝐻uii

5: procedure DPUII-Gen(𝑀uii, 𝑁syn)

6: Sample 𝐷uii, syn from a test domain Dtest

uii
with 𝑁syn

samples that comply with 𝐻uii

7: return 𝐷uii, syn

coefficient matrix Σ
ft.
(estimated from Kendall’s 𝜏 correlation co-

efficient matrix Σ𝜏
ft.
, see details in [8]); and in line 7, the trained

model includes these noisy marginals and will be returned. For

the generate step, we sample 𝑁syn samples that comply with these

noisy marginals in line 9, and then inverse transform the discretized

continuous columns and then flattened structural columns in line

10, which produces the synthetic feature dataset 𝐷
ft., syn

. This al-

gorithm can be proved to be (𝜖, 𝛿)-DP based on Theorem 4.4 and

Theorem 4.5.

    User ID           Freq.

1001 4

1002 2

1003 2

1004 1

1005 1

    Freq.    Freq. of Freq.

1 2

2 2

3 0

4 1

    Freq.    Freq. of Freq.

1 1

2 2

3 1

4 1

    User ID           Freq.

2001 1

2002 4

2003 3

2004 2

2005 2

First-Order Histogram
(Production)

Second-Order Histogram
(Production)

Second-Order Histogram
(Synthetic)

First-Order Histogram
(Synthetic)

Figure 3: Illustration of second-order histogram computa-
tion. The left two tables are the first-order and second-order
histograms for production table, and the right two tables are
second-order and first-order histograms for synthetic table.

DPSDG Algorithm for UII columns. Our DPSDG algorithm

for UII columns is shown in Algorithm 2. The key of the algorithm

is to compute the second-order histogram of 𝐷uii, denoted by 𝐻uii,

as in line 2. For example, consider a UII dataset 𝐷uii with just one

column "User ID". As illustrated in Fig. 3, we first compute the

first-order histogram of 𝐷uii, which indicates the frequency (or

occurrence) of each user ID. Due to the sensitivity of the values

of user IDs themselves, we should not directly preserve the first-

order histogram. Instead, we further compute the second-order

histogram (i.e., the histogram of the first-order histogram) of 𝐷uii,

which contains only the values of the frequencies as well as the

frequencies of these frequencies. This way, we not only drop those

sensitive ID values, but also compress the key information since

the cardinally of user IDs is in general much larger than their

frequencies. Once we have𝐻uii, the remaining part of the algorithm

(line 3-7, i.e., noise perturbation and sampling) is quite similar to

Algorithm 1, except that we need to sample 𝐷uii, syn from a test UII

dataset domainDtest

uii
, i.e., synthetic UIIs are essentially pseudonyms
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Algorithm 3: Differentially-Private Synthetic Data Gener-
ation DPSDG

Input: 𝐷 , 𝜖 , 𝛿
Output: 𝐷syn

1: procedure DPSDG-Fit(𝐷 ; 𝜖, 𝛿)
2: Split the privacy budget into 𝜖

ft.
, 𝛿

ft.
and 𝜖uii, 𝛿uii, s.t.

𝜖
ft.
+ 𝜖uii = 𝜖 , and 𝛿

ft.
+ 𝛿uii = 𝛿

3: Subsample 𝐷ft. and 𝐷uii with rate 𝛾𝑓 𝑡 . and 𝛾𝑢𝑖𝑖

respectively. Get subsampled dataset �̃�ft. and �̃�uii

4: Adjust 𝜖
ft.
, 𝛿

ft.
and 𝜖uii, 𝛿uii according to Theorem 4.3. Get

𝜖
ft.
, ˜𝛿

ft.
and 𝜖uii,

˜𝛿uii

5: 𝑀
ft.

= DPGCKendall-Fit(�̃�ft.; 𝜖𝑓 𝑡 .,
˜𝛿𝑓 𝑡 .)

6: 𝑀uii = DPUII-Fit(�̃�uii; 𝜖𝑢𝑖𝑖 ,
˜𝛿𝑢𝑖𝑖 )

7: return𝑀 = (𝑀
ft.
, 𝑀uii)

8: procedure DPSDG-Gen(𝑀, 𝑁syn)

9: 𝐷
ft., syn

= DPGCKendall-Gen(𝑀
ft.
, 𝑁syn)

10: 𝐷uii, syn = DPUII-Gen(𝑀uii, 𝑁syn)
11: return 𝐷syn = (𝐷

ft., syn
, 𝐷uii, syn)

unlinkable to the original UIIs. In the example of Fig. 3, the synthetic

user IDs start from 2001, and cannot be linked back to the real user

IDs in the input dataset.

CompleteDPSDGAlgorithm.The complete DPSDG algorithm

to synthesize a dataset 𝐷 is given in Algorithm 3, which incorpo-

rates privacy budget splitting, subsampling and utilizing Algorithm

1 and 2. According to Theorem 4.3, 4.4 and 4.5, the algorithm can

be proved to be (𝜖, 𝛿)-DP.

5 EVALUATION
This chapter presents our experiencewith utilizing privacy-compliant,

production-like synthetic data generated by SynQB for compute

engine testing. The key results are summarized as follows.

SynQBprovides a comprehensive coverage of diverse query
types. Fig. 4(a) illustrates the extensive range of operator types
covered by SynQB through the distribution. This highlights the sig-

nificant advantage of SynQB, which is its high degree of adaptabil-

ity and control over operator and feature coverage. This flexibility

allows for customizing coverage to suit various requirements or

objectives for continuous verification efforts.

The similarity between synthetic data and production data
is high for compute engine testing. Utilizing SynQB’s extensive
collection of queries for Presto testing, we executed the modified

queries using the corresponding synthetic data sets and compared

the resulting output row counts with the production runs. As illus-

trated in Fig. 4(b), the cumulative distribution function (CDF) of

the relative differences in output rows indicates that approximately

70% of the queries exhibit <32.8% variation, with 55% of those yield-

ing identical output row counts as the production runs. Although

the remaining 30% display a greater relative difference, which may

not be suitable for performance assessments but can still serve the

purpose of correctness testing.

The performance test results over time serve as an indi-
cator of potential regressions.We selected a set of queries and
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Figure 4: SynQB Evaluation.

monitored their performance over time. Fig. 4(c) depicts the fluc-

tuation in the average total split CPU time between February and

April. Notably, the average CPU time remained remarkably stable,

implying that the Presto engine did not experience any significant

regressions during the specified period.

6 CONCLUSIONS
We built SynQB - a query bank that leverages a carefully designed

DPSDG algorithm to generate privacy-compliant production-like

synthetic data. It enables test coverage for different compute en-

gines, query operators and workloads and facilitates detection of

correctness and performance regressions, and therefore greatly

improves our confidence in new compute engine releases and en-

hances the reliability of our data warehouse.
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