
Process Model-based Access Control Policies for
Cross-Organizational Data Sharing

Liam Tirpitz

RWTH Aachen University

Aachen, Germany

tirpitz@cs.rwth-aachen.de

Leon Gentges

RWTH Aachen University

Aachen, Germany

leon.gentges@rwth-aachen.de

ABSTRACT
Controlling who can access which data and when is an impor-

tant part of enabling data sovereignty during data exchange across

organizations. Following the FAIR principles, sharing data with

additional metadata, such as provenance information or data qual-

ity measures, is a requirement for data reuse. However, in busi-

ness contexts collaborators often consider the danger of revealing

trade secrets through oversharing. Since modern, interconnected

processes along or across supply chains hinge on efficient data

exchange, easy mechanisms to share valuable data without giving

up control are required. We argue that the context of the under-

lying process, in form of process models, can be used to augment

data sharing systems. This can be realized by giving access to data

based on visually modeled interactions and by selectively revealing

process model fragments as part of the shared metadata. There-

fore, we present a framework to define access control policies for

collaborative sharing in data ecosystems, based on interorganiza-

tional process models. With this approach we take the first step

towards tightly integrating process and data management across

organizational boundaries.

VLDBWorkshop Reference Format:
Liam Tirpitz and Leon Gentges.

Process Model-based Access Control Policies for Cross-Organizational

Data Sharing. VLDB 2024 Workshop: 13th International Workshop on

Quality in Databases (QDB’24).

1 INTRODUCTION
With increasing digitalization in many domains, data generated

by diverse processes has become ubiquitous. Consequently, many

companies across various industries actively look for opportunities

to efficiently use these large amounts of data. Often, this data is

viewed only as an internal asset to optimize local processes and

product quality [9], while sharing data is seen with skepticism [18].

However, increasingly complex multi-stakeholder settings arise

in many fields, which require cross-organizational collaboration,

including research [42], medicine [41] and industrial manufactur-

ing [29]. For example, modern manufacturing processes often pro-

duce products from components assembled by separate, specialized

departments or external suppliers. The resulting supply chains are

complex and interdependent, reaching from the production of the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

first part to a final product. To enable advanced use cases, such as

a circular economy reducing resource consumption, transparency,

and traceability of parts is crucial, even through the usage and

recycling phase of a product life cycle, which may also be required

by legislation in the future [40]. Sharing data across internal depart-

ments and external business partners can be an enabler to utilize

untapped synergies, improve efficiency, and sustainability and re-

duce cost. To comply with future regulations and enable frictionless

collaborations, manufacturing companies need to adapt data-driven

workflows and incorporate the selective publication of high quality

manufacturing data into their processes [29].

However, the exchange of data between organizations often in-

troduces friction itself and many obstacles remain that impede the

widespread and simple implementation of data sharing in indus-

try [9], caused by organizational hurdles in strategic, regulatory,

and operational regards and lack of interoperable technologies. The

party who shares data (data provider) is often interested in sharing

only selective parts of data and providing secure access to specific

parties, to protect potential trade secrets. On the flip side, the data

consumer wants to receive as much additional information (meta-

data) as possible to properly assess the origin and context of the

received data and assure that data quality is maintained [22]. As a re-

sult of this goal conflict, the details of data and metadata exchanged

in supply chains are often manually negotiated between individual

collaboration partners, leading to inflexible collaborations.

Initiatives and projects, such as the International Data Spaces [27]

or the Internet of Production [29] try to break the resulting data silos
and strive towards dynamic collaboration and data sharing across

organizational boundaries, e.g., by establishing cross-organizational

data ecosystems [10]. Such solutions for sharing data usually con-

sider generation and exchange of data as independent operations,

while data, especially in the manufacturing industry, is connected

to a larger context in form of a physical product the raw materials

and the overall process that generated the data. To be useful in

collaborations, data needs to fulfill certain requirements, as, e.g.,

stated by the FAIR principles [42]. These principles require data

to be described with rich metadata and provenance to be findable

and reusable across contexts. In many business domains, e.g., in in-

dustrial manufacturing, data is generated by underlying processes.

As the processes influence which data is generated and how, they

are important sources of provenance information. We argue that

process models can be used to link data to their context, providing

a way to explore contexts and find data, contributing to findability

and reusability. By advancing FAIR data management and automat-

ically collecting process data across organizations, we can enhance

data quality [34], through rich metadata and context information.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Leveraging detailed product information from suppliers, en-

riched with relevant details about the production process, such

as used raw materials, process parameters, and machines, enables

independent assessments on the physical product and the data qual-

ity. This may, e.g., be crucial to optimally recycle products. In the

long term, industry-wide applied transparency could substantially

contribute to establish a circular economy [20] and provide the

ability to certify claims on a product (origin, processing, used mate-

rials) through selective sharing of production context information

formalized in process models.

Data is increasingly considered in the context of process mod-

els in literature. For example, Pullonen et al. [30] discuss process

modeling to help analyzing privacy leakages along business infor-

mation flows. Beverungen et al. [2] argue that data generated during

processes should be tightly integrated with the respective process

models to tackle the challenges of highly connected environments.

We argue, that a multidimensional view on cross-organizational

collaborations which considers both, the interconnected processes

as well as the exchanged data, in an integrated system can improve

the positive impact of collaborations on data quality. By increas-

ing automation, we enhance the quality of context information.

Through considering data sharing as a first-class citizen in the exe-

cution of the respective business processes themselves, sharing of

useful data becomes easier and therefore more viable. In turn, the

automated collection and cross-organizational sharing of important

context information and process-driven data management provides

reliable access to rich metadata which enables organizations to

better assess the data quality in collaborative environments. In the

other direction, the value of data in process models is increased by

connecting them to actionable data ecosystems.

In this paper, we specifically contribute towards sharing of mean-

ingful data, by increasing the integration between processes and

the data they generate. By proposing access control policies for data

sharing based on the process context of shared resources described

through process models, we lower the barrier to share context infor-

mation, increasing the ability of collaborators to assess the origin

and quality of third-party data.

Contributions. Overall, with this paper, we make the following

contributions:

• We describe a framework for access control policies which

enables data resources to be shared to selected parties based

on collaborations modeled in BPMN process models.

• We show an abstraction algorithm to obfuscate the details

of a process model shared with third parties, to selectively

reveal relevant metadata and context information from a

process model, without revealing trade secrets.

• We present our access framework using open standards

and protocols as our initial steps towards the vision of user-

friendly, automated and FAIR exchange workflows for data

ecosystems through collaborative, cross-organizational pro-

cess modeling.

Structure. In the following, we will first discuss related literature,

with regard to access control, process models, and data sharing in

Section 2. In Section 3, we discuss our visual access control modeling

elements and formalize our underlying access policies in Section 4.

Selectively giving access to context information is part of our access

policy framework, therefore we present an hierarchical approach to

abstract away sensitive details from process models in Section 5. We

present our prototypical implementation of process model-based

access control in Section 6 and evaluate it in Section 7. We discuss

potential future work in Section 8 and conclude in Section 9.

2 RELATEDWORK
Our work combines process models with selective data sharing via

access control. While literature has mostly addressed these issues

individually, there has been work done that combines relevant

aspects, such as process model extensions to improve data handling.

2.1 Data in Process Models
While some process modeling languages only consider the control
flow of a process (i.e., the order of activities), more powerful lan-

guages provide basic modeling concepts for data and their exchange

across organizations. For example, the Business Process Model and

Notation (BPMN) language [26] natively differentiates different

types of persistent and non-persistent data objects and collections,

which can be connected to activities and control flow elements

through data associations. In BPMN, such modeling elements are

user-friendly, but do not provide the semantics to formally specify

the data interactions needed to automate data handling. While a

centralized process execution engine can define its own seman-

tics, distributed, collaborative sharing frameworks need to define

meaning for actionable models.

Hund et al. [14] implemented a web-based open source data

sharing framework for executing BPMN models across organiza-

tions in the healthcare domain. Their implementation focuses on

event-based modeling in BPMN and uses a domain-specific data

format and underlying infrastructure, which cannot be generalized

for other domains. In 2021, Yoshiuchi et al. [43] proposed a data

sharing system for manufacturing environments leveraging process

models. Their approach concatenates selectively abstracted process

model parts from each organization to a shared view which other

organizations can run information discovery on and request data

access from other participants. While their models do not explic-

itly handle data access policies and use custom process models, it

provides different levels of model abstractions.

2.2 Process Model Abstractions
Similarly to the data resources themselves, their context (in the

form of process information) can be confidential, especially to ex-

ternal collaborators. In such cases, the shared context information

should not contain all the details of the internal process model. In-

stead, BPMN process models can be abstracted, such that they only

contain the information that is relevant for the partner organization.

Smirnov et al. [36] provides a method to generate non-hierachical

abstractions through a set of transformations applied based on pro-

cess semantics and manually selected activities to be hidden. The

approach by Ramos Merino et al. [31] recognizes redundant pat-

terns in models and provides appropriate simplifications. Tsagkani

and Tsalgatidou [38] focused in their rule-based abstraction ap-

proach especially on increasing the comprehensibility of complex

BPMN orchestrations. While these approaches provide abstraction

2

logic for process models, they focus on optimization and improving

readability and do not consider the need to hide process details

from interorganizational collaborators. Liu et al. [23] highlight the

importance of interorganizational processes and mine cooperative

processmodels for collaborating organizations by building common,

abstracted process models through a trusted third-party without

revealing event logs and process details to collaborators. This ap-

proach considers only those activities as shareable, that facilitate

communication with external organizations. There is no way to

explicitly model access or consider the context of a communicating

activity as part of the shareable model.

2.3 Modeling Security in Process Models
Leitner and Rinderle-Ma [21] systematically study different ap-

proaches to extended BPMN by security paradigms, such as mod-

eling elements to visualize and enact security concepts, of which

access control is one aspect. The analyzed approaches are catego-

rized by their control models, such as role-based and task-based

access control. Role-based access control assigns permissions based

on user-roles, task-based access control focuses on allowing specific

operations. Overall, those modeling elements for process security

focus on access control for executing process models, but do not

consider the sharing of data and process context. SecBPMN [33]

provides a framework with modeling elements to express and enact

security policies between actors. However, it does not support in-

terorganizational processes. Kang et al. [19] provide access control

to process models, including data access, but do not consider the

provenance provided by the process context.

2.4 Provenance-Driven Access Control
Modern access control often falls in the class of Attribute-Based

Access Control (ABAC) [13], which is characterized by its ability

to consider diverse attributes, including any resource content, sys-

tem states, contextual information (e.g., user information), with

rules expressed through machine-interpretable logical statements.

One recent representative is the Access Control Policy (ACP) data

model [3], which expresses access policies for resources in RDF.

SHACL-ACL [32] uses data shapes to express access control condi-

tions as integrity constraints on RDF graphs.

Managing access control for data based on context information

and metadata has been researched in terms of provenance-driven

access control, e.g., based on the established PROV data model [24].

By enforcing access control based on data origin and lineage, this

approach can efficiently restrict accesses crossing organizational

boundaries [1]. Park et al. [28] proposed a family of Provenance-
Based Access Control (PBAC) models for arbitrary target resources,

by defining dependency patterns on the provenance graph via

regular expressions. Sun et al. [37] extended this approach and for-

malized their provenance dependency pattern language as the so

called Typed Provenance Model, which defines a start object node

and a subsequent provenance pattern to determine access to the

target at the end of the path. Danger et al. [7] developed an XML-

based access control language for provenance data, and formalized

it for the Open Provenance Model (OPM), an earlier representa-

tion preceding W3C’s PROV. Queries to the provenance graph are

Pool

Start/End
Event

Activity

Data Object

Control Flow

Data Flow

Figure 1: An overview of the used BPMN modeling elements

responded to with abstracted views that hide nodes or graph frag-

ments as dictated by the provenance access control. Their aim was

to ensure that a returned provenance graph view remains a valid

provenance graph and does not become semantically invalidated by

nodes and edges. These approaches are similar to process-based ac-

cess control, since they consider the context of data and how it was

created. While a relationship between process models and prove-

nance information exists [5], provenance is usually retrospective,

while processes are prospective. Therefore, process model-based

access policies enable visual and actionable models of collabora-

tions before concrete data elements are generated. To incorporate

process context into data ecosystems, access control must consider

conventional access policies combined with context-based access

via prospective and retrospective provenance in a single model,

which currently does not exist.

3 MODELING INTERORGANIZATIONAL
PROCESSES WITH DATA EXCHANGE

To apply access control to resources based on process models, we

first need to define modeling elements and interaction patterns

that we use to express who shares which data with whom and

how. These patterns need to be realized through an underlying data

ecosystem to translate to functional interactions, which we discuss

further in Section 6.

Loose Coupling. Interorganizational processes can be modeled in

different ways, ranging from executing a centralized workflow

on external resources to loosely coupling independent processes

through messages [6, 39]. We use persistently identified, versioned

data resources to loosely couple organizations. Interaction between

organizations are therefore always read or write operations to data

resources and we intentionally omit the typical message flowmodel

syntax used in BPMN. Compared to messaging, resource-based in-

teractions entail a more general notion of loose coupling. The read

operation to a resource may (or may not) refer to an already existing

resource or revision, without the need to wait for a specific mes-

sage. This data-focused approach to collaborative interactions still

allows message-like communication patterns, for example through

a publish/subscribe pattern, such that a message would be realized

through triggering a subscription on a data resource or a topic

on a message broker. This pattern is chosen, due to its flexibility

and suitability for alignment with data sharing ecosystems and we

express it through visual modeling elements in BPMN.

Modeling Elements. In BPMN, pools (see Figure 1) can be used to en-

capsulate processes belonging to independent participants. We use

3

C
om

pa
ny

 A

Activity
Y

Activity
X

C
om

pa
ny

 B

Data1

Data2

§

Policy D

Policy A

Policy B

Activity
Z

§

Policy E Policy C

§ §§

Figure 2: We define multiple modeling patterns to express
data exchange and different access policy targets in a process
models. Organizations such as Company A are visualized as
pools embedding their respective process models.

pools to denote authorities, which represent organizations respon-

sible for the contained process and data, as illustrated in Figure 2.

Authorities need to be uniquely identified by a persistent identi-

fier. Data Objects are used to denote data resources (Data2 in our

example) or collections of data resources (denoted following the

BPMN specification by three vertical lines, see Data1), such as di-

rectories. Each data object needs to be uniquely identified within

its authority, such that the combined identifier provides a globally

unique reference to each resource. Further, data resources may be

versioned, so version identifiers can be added, such that access

policies target either a specific revision, the latest version, a range

of versions or the whole resource, including all revisions. Data

Objects can be associated with activities, which express the control

flow of processes and can read, write, and transform data resources.

We define policy objects as specific types of data objects, which
represent access policies to be applied in the model. To connect

these modeling objects, we define patterns on how to express the

data exchange associations.

Modeling Patterns. Cross-Organizational data associations can ei-

ther be reading (Activity X) or writing (Activity Y). The data owner

can associate data access policies in the process model. If a policy is

modeled inside the pool, but not associated with another modeling

element, the policy is applied to all data shared by this authority

(Policy A). A policy can be associated with another pool (Policy

B). In this case, the policy is applied to all data shared with this

authority. If a policy is associated with a data object (Policy D), it

applies to all shares of this data, independent of the collaborating

authority. Policies associated with data associations (Policy E) only

apply to this specific share. Finally, policies associated with activ-

ities (Policy C) can be applied to data used by or generated from

this specific activity.

These policies and their targets in the process model need to

be able to express which data can be read by whom and which

context information of a data object should be revealed as part of

its metadata. To answer these challenges, we next define our access

policy framework.

4 PROCESS MODEL-BASED ACCESS CONTROL
As discussed previously, we define access control policies in dif-

ferent contexts in our process models. To realize these different

contexts, we develop a suitable access control framework, by first

defining core concepts of our data model. To consider access to

resources and their context, we need a combined model considering

ABAC, PBAC, and process model context, including selective shar-

ing and hiding of process context information. Next, we present

our access control framework which we build in alignment with

ACP [3], before discussing its implementation in Section 6.

Access Modes. We define a linear sequence of access modes. The

resulting order defines the restrictiveness of each mode compared to

another, to resolve conflicts later on. We introduce a minimal access

mode that allows nothing, access modes allowing to know about

the existence of resources (allows resources to be listed in shared

data catalogs or visible in process models), and access modes to

read or write resource revisions. We assume that each access mode

includes the less restrictive modes. For example, the permission to

write to a resource also allows reading it.

Target Groups. Instead of defining a an Access Control (AC) for

each organization that shall have access to a resource, organizations

can be grouped. In that case, a pool in our diagram is not associated

with an organization, but a group, which can be indicated through

the multiple participant marker (three vertical lines) in BPMN. This

allows us to express 1:n manufacturer-to-customer relationships

where the manufacturer regularly gets a new customer who may

access the same base information as any other customer. Further-

more, we define a group that represents the public. An AC becomes

effective if and only if the requesting organization is member of

the specified group and if all defined conditions are fulfilled. Then

the specified access mode is granted to the target resource.

Conditions for Resource Access. Our model must be able to check if

attributes of a target resource satisfy conditions stated in the access

policy. In ACP [3] multiple conditions are checked by grouping

through acp:ifAll, acp:ifAny and acp:ifNone. An AC can only

be effective if the conditions Φ𝑎𝑙𝑙 ,Φ𝑎𝑛𝑦,Φ𝑛𝑜𝑛𝑒 are fulfilled in the

following way:

(|Φ𝑎𝑙𝑙 ∪ Φ𝑎𝑛𝑦 | > 0) ∧ (∀𝜑 ∈ Φ𝑎𝑙𝑙 : 𝜑)
∧ (Φ𝑎𝑛𝑦 ≠ ∅ ⇒ ∃𝜑 ∈ Φ𝑎𝑛𝑦 : 𝜑)
∧ (∀𝜑 ∈ Φ𝑛𝑜𝑛𝑒 : ¬𝜑)

While empty formula sets evaluate to true, to avoid granting access

to resource via empty formulas, we require Φ𝑎𝑙𝑙 or Φ𝑎𝑛𝑦 to have

a rule defined that needs to be fulfilled. If Φ𝑎𝑙𝑙 is not empty but

Φ𝑎𝑛𝑦 contains no formula, by default ∃𝜑 ∈ Φ𝑎𝑛𝑦 would always

evaluate to false so that the concatenated formula sets would be

unfulfilled as well. Thus we make it a condition that empty Φ𝑎𝑛𝑦
can be fulfilled as well. We build our approach on top of this model.

Revisions and Provenance. One dimension to limit access to data

is the access to resource revisions. We enable policies to target

specific revisions and ranges of revisions, e.g., based on time. For

4

C
om

pa
ny

 B

Activity
Y

C
om

pa
ny

 A

Activity
X Data1

Figure 3: Organization Amakes data resource Data1 available
to Organization B through actively modeling a data associa-
tion in a collaborative process model.

example, this can be useful if a resource represents data associ-

ated with a product manufactured for a customer on a specific day

and all related data should be shared. Further, data may only be

shared after a grace period if it becomes less sensitive over time

and recycling may become important for a product at the end of

its life cycle. In ABAC we can involve environmental values, such

as the current time, into condition evaluation. To grant access to a

resource effective from, e.g., 5 years after production, one would

compare the current time against a resource property that expresses

the elapsed time since its generation or a resource attribute stating

a confidentiality time limit.

Unfortunately, ACP can only test the existence of an attribute

but not compare any values. Therefore, we align the necessary

concepts with the Open Digital Rights Language (ODRL) [15]. With

its class odrl:Constraint an operator (equals, not equals, lower

than, greater then, in etc.) and two operands can be represented

and evaluated. Either these operands are static strings, dates, or

numeric values, or they represent functions that refer to resource

values. However, reading a custom value is not natively supported

by ODRL, which is required for our model to express access based

on provenance relations.

Thus, we introduce a custom Constraint class that represents a
second-order comparison operator and its operands. The operands

can either be static values, a dynamic reference to a resource prop-

erty (e.g. revision ID), or a custom resource attribute, containing, for

example provenance relations, or a reference to an environmental

attribute such as the current time. These constraints can be used

as regular condition for ACs and concatenated as shown in the

formula above. A constraint can be formalized as 𝜑 ≡ 𝑜𝑙 ◦ 𝑜𝑟 with
operand ◦ ∈ {=,≠, <, ≤, >, ≥} and left and right operands 𝑜𝑙 , 𝑜𝑟
being functions mapping either to static or dynamic numbers, date

or string values or sets of the previous types. We can also apply the

set operators ◦ ∈ {∈, ∉}.

BPMN relations. We derive access policies from resource relations

depicted and represented in BPMNs as illustrated in Figure 3. To col-

laborate, organizations can create common process models. These

collaborations can be considered as contract, that applies to the

resources that were created in context of the respective process

instance. As shown in Figure 3, by instantiating the process in the

Company A pool, A agrees to share the resource instance of Data1

with organization B based on the fact that there is a data association

drawn from that resource to an arbitrary task within the organi-

zation pool of B. To harden the constraint and prohibit external

manipulation, one could additionally demand that the collaboration

process model originates from the data provider, in this case A.

Beyond direct modeled sharing relations, we also enable inher-
itance, to derive access and visibility of the surrounding process

context. Depending on the target of a policy, different semantics

are possible. For example, policies of type A (cf. Figure 2) do not

reference specific resources. Instead, all resources contained in a

pool inherit the policy.

For policies of type C and type D, targeting specific resources or

activities, inheritance can also be applied along the control flow of

the process model. This is specifically useful to selectively reveal

the provenance of a shared resource, based on the process context.

For example, if we share a resource, we may also want to share

the details of the generating activity and the resources that were

used by the generating activity. By defining the reach of a policy

along control flow relations, we can define which part of a process

model and the connected data resources should be fully or partially

affected by a policy.

We define an inheritance direction to be forward, backward, or
both. A policy is inherited forwards, from an origin to a target, if and

only if there is a path of control- and dataflow relations connecting

the origin with the target. Analogously, a backward inheritance

is applied if the target is connected to the origin. Note that this

definition also includes paths along cycles. We define a path length
to limit the scope of shared context information. Specifically, a

policy is only inherited, if the path between the origin and target is

no longer that the given path length. Further, a policy inheritance

can be set to inherit the full access policy, or only influence the

revelation of the process context, which we discuss in Section 5.

Formally, we extend our access control resource by a set 𝐻 that

stores zero or more reference functions that describe the environ-

ment of a BPMN modeling element. Each refers to a set of matched

resources. To determine the access permission mode of the target

resource, the granted permissions for the related resources are de-

termined. The minimum of these permissions is then taken into

account as permission for the target resource. If there are policies

for the specific target resource defined and the permission granted

by the resource-specific policies are more restrictive than the inher-

ited ones, that more restrictive permission overwrites the inherited

ones: Let 𝐴𝑜 (𝑓) return the the resource-specific, granted access

mode for resource (revision) 𝑓 to organization 𝑜 .

𝐴′𝑜 (𝑓) =𝑚𝑎𝑥{𝐴𝑜 (𝑓),𝑚𝑖𝑛{𝐴𝑜 (ℎ(𝑓 ′)) | ℎ ∈ 𝐻 }}

then returns the applied access permissions.

Resolving Conflicting Rules. Since policies can target different mod-

eling elements, multiple policies can apply for the same interaction,

potentially leading to conflicts. To resolve this, we prioritize the

more specific policy type, e.g., a policy that is valid for all data ob-

jects in a pool is less specific then a policy assigned to a specific data

object. We denote 𝑥 <𝑠 𝑦 to indicate that 𝑥 is more specific than 𝑦

5

and 𝑥 =𝑠 𝑦 to denote that 𝑥 and𝑦 are equally specific. For the policy

types defined in Section 3, we define 𝐸 <𝑠 𝐷 <𝑠 𝐶 <𝑠 𝐵 <𝑠 𝐴.

Note that the specificity of a policy determines if a certain el-

ement should be affected, while the restrictiveness is used to de-

termine which policy should be applied if multiple policies affect

the same element. For example, different models may reference

the same data objects, which can lead to multiple, equally specific

policies. In that case, our access control model is evaluated the

following way: A target resource is prohibited to be accessed unless

a an AC is found whose conditions are all fulfilled (“deny unless

permit" [25]). This cautious evaluation approach minimizes the risk

of unintentionally revealing sensitive information by ensuring that

no prohibition rules are overlooked during the definition process.

By design, also the combination of conditions/constraints within

an AC is unambiguous.

However it is possible to define cyclic inheritance dependencies.

For example, evaluating an AC A that depends on an AC B that,

again, depends onACAwould not terminate. Users need to consider

that when defining ACs. However, we will not go deeper into that

issue since it does not constitute a security threat where resources

might unintentionally be exposed.

5 SELECTIVE MODEL REVEALING
While data providers are interested in providing their process mod-

els for smooth collaboration, sensitive details should remain hidden

and data consumers shall only have access to abstracted views.

The data owner can create multiple different views of a process,

each dedicated to specific groups of collaborators and select, which

elements (abstraction objects [35]) may be included in a view, and

thus be exposed. This can be done through explicitly choosing

exposedmodeling elements. Additionally, we chose to automatically

expose the modeling elements in a certain range around a shared

resource as part of the provenance metadata, if defined in a policy.

The opposite approach of selective hidingwhere the ownermanually

marks which aspects of the model should remain hidden in the view

carries a greater risk of implicitly not hiding sensitive information.

Since we focus on data sharing, we develop a BPMN abstraction

that considers both, control and data flows.

Hierarchical Abstraction. We explore a scenario where a less sensi-

tive data resource is embedded within a sensitive process fragment.

The shared view should not contain this sensitive process fragment

and the data it typically generates. However, we must be able to

reveal the less sensitive data resource itself, irrespective of the sen-

sitive process fragment in the view. While fine-grained control over

data resources is required, the degree of detail in abstracting the

control flow elements is less relevant for data-centric collaboration.

For our abstraction approach, we exploit the hierarchical struc-

ture that sub-processes in BPMN diagrams offer. In line with com-

mon organizational structures, we organize processes hierarchi-

cally [17]. We argue that on a large scale, our sub-process based

abstraction method is feasibly transferable to real-world applica-

tions. However, the price of our method is that process engineers

need to actively pay attention to model that hierarchical depth in

the process models since flat process models cannot be abstracted

at a very granular level.

C
om

pa
ny

 A

Activity
sensitive

Activity
Y

Activity
X

C
om

pa
ny

 A

Activity
Y'

Activity
X

Figure 4: Example of our hierarchical BPMN abstraction ap-
proach: Original process model of Company A (top) and re-
sulting view (bottom).

We define a process layer as the elements of a process or a sub-

process between a start and one or multiple end events without step-

ping into sub-processes or crossing organizational borders (pools).

Note that out of the set of considered elements, crossing organi-

zational borders is only possible for data associations. On each

process and sub-process layer, after execution of our abstraction

the following two rules must hold true:

• The data flow elements (data object and data associations) of

the current process layer will be included in the abstracted

view if and only if they are marked as visible.

• The control flow elements (tasks, sub-processes, gates, se-

quence flows) of the current layer will be included in the

abstracted view if and only if all tasks and sub-processes of

the current layer are marked as visible. All invisible control

flow elements in that layer are abstracted into a single task.

Whether a process element is marked visible or not, is derived from

the access permissions assigned to its respective resource instance.

Our access control model, for example, assigns an access mode to

the access policies, determining whether another organization may

be aware of the existence of a resource.

To enable the process of model abstraction, we define the fol-

lowing operations on a BPMN model: deletion of elements, re-

associating data objects, and creating simple processes consisting

only of a connected start event, a new dummy task, and an end

event. This allows well defined and compact transformation, which

could be expanded in the future.

In the followingwe formalize an algorithm that abstracts a BPMN

model based on the previously formulated rules. The algorithm

outputs a valid abstraction of the original BPMN. When observed

6

externally, without insight into internal operations, BPMN sub-

processes function similarly to conventional tasks. To stress that

behavior, in the following we name sub-processes as group tasks.
We formalize a given process model𝑚 as an element in the set

of all BPMN process models PM as𝑚 = (𝑃,𝑇 ,𝐺, 𝐷,𝐶, 𝐹, 𝑆, 𝐸, 𝜎, 𝜏) ∈
PM, where:

• 𝑃 is a non-empty, finite set of pools.

• 𝑇 is a non-empty, finite set of tasks

• 𝐺 is a non-empty, finite set of gateways (decision points,

splitting or merging control flows, e.g., AND gates).

• 𝐷 is a finite set of data objects.

• 𝐶 is a finite set of directed control flow edges (relations

connecting elements in 𝑆,𝑇 ,𝐺, 𝐸 within a pool).

• 𝐹 is a finite set of directed data flow edges (a relation asso-

ciating elements in 𝑇, 𝐷 with each other).

• 𝑆 is a non-empty, finite set of start events.

• 𝐸 is a non-empty, finite set of end events.

• 𝜎 : 𝑃 ∪𝑇 → P(𝑇 ∪𝐺 ∪𝐷) maps from conventional BPMN

tasks to ∅ and from process layer wrappers (pools in 𝑃 and

group tasks 𝑡𝑔 ∈ 𝑇𝐺 ⊆ 𝑇) to the set of its contained BPMN

elements.

• 𝜏 : 𝑃 ∪ 𝑇𝐺 → 𝑆 assigns a start event to pools and group

tasks.

With include𝑣 : 𝑇 ∪𝐷 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, we define, what BPMN

elements from 𝑇 ∪ 𝐷 shall be included in view 𝑣 of 𝑚 ∈ PM. In

the example input BPMN in Figure 4, data objects and tasks in the

abstraction set [35] 𝜔 = {𝑒 ∈ 𝐷 ∪ 𝑇 | include𝑣 (𝑒) = 𝑓 𝑎𝑙𝑠𝑒} are
colored gray and thus are not included in view 𝑣 .

The resulting view (bottom) has run through the following re-

ductions: Since the sub-process (second level) contains at least one

gray sensitive control flow element, the whole control flow in that

sub-process is replaced by a dummy task. Since all control flow of

the process on first level (pool content) are in-sensitive, its control

flow elements are not abstracted.

To abstract 𝑣 from the original process collaboration𝑚, we apply

the following Algorithm 1 with include𝑣 as input.
The presented Algorithm 1 starts with the original process model

view as input which it reduces (line 1) afterwards. First it iterates

all pools in the BPMN collaboration (line 2) to recurse into their

nested process levels and reduce the control flow on each level

depending on the elements’ visibility (line 3). Afterwards, all control

flows in the process collaboration are still valid and contain only

elements that are marked as visible with include𝑣 . Finally (line 5),

isolated from the control flow abstraction, all data objects that are

not marked as visible (line 30) and their connected data associations

(line 31 and 32) are purged from the process model view 𝑣 .

With the process levels (group tasks) considered as nodes of

the process hierarchy search space which spans starting at each

pool, the control flow abstraction executes a depth first search on

the hierarchy levels (lines 11 and 14). For a current process level,

the member tasks 𝑇 are determined (line 8) and filtered for group

tasks𝑇𝐺 (line 9). Subsequently to the recursion into the subordinate

process layers, the abstraction condition whether all control flow

elements in the current process layer are visible is checked (line

10). If it is not fulfilled, the control flow contained in the current

process layer gets abstracted to/replaced by a new “dummy" process

Algorithm 1 Hierarchical Process Model Abstraction

Require: 𝑚 ∈ PM, include𝑣 ∈ 𝑇 → 𝑆

Ensure: 𝑣 = (𝑃,𝑇 ,𝐺, 𝐷,𝐶, 𝐹, 𝑆, 𝐸, 𝜎, 𝜏) ∈ PM
1: 𝑣 ←𝑚

2: for all 𝑝 ∈ 𝑃 do
3: HierarchicallyAbstractCF(𝑝)

4: end for
5: PurgeExcludedDataObjects

6: return 𝑣

7: procedure HierarchicallyAbstractCF(𝑙 ∈ 𝑃 ∪𝑇𝐺)

8: 𝑇 ′ ← 𝜎 (𝑙) ∩𝑇
9: 𝑇 ′𝑔 ← {𝑡 ′ ∈ 𝑇 ′ | 𝜎 (𝑡 ′) ≠ ∅}
10: for all 𝑡 ′𝑔 ∈ 𝑇 ′𝑔 do
11: 𝑣 ← HierarchicallyAbstractCF(𝑡 ′𝑔)
12: end for
13: if ∃𝑡 ′ ∈ 𝑇 ′ : include𝑣 (𝑡 ′) = 𝑓 𝑎𝑙𝑠𝑒 then
14: AbstractCurrentCFLevel(𝑙,𝑇 ′)
15: end if
16: end procedure

17: procedure AbstractCurrentCFLevel(𝑙 ∈ 𝑃 ∪𝑇𝐺 ,𝑇 ′ ⊆ 𝑇)

18: 𝐺 ← {𝑔 ∈ 𝐺 | 𝑔𝐶𝑡 ′ ∨ 𝑡 ′𝐶𝑔⇒ 𝑡 ′ ∉ 𝑇 ′}
19: 𝐸 ← {𝑒 ∈ 𝐸 | 𝑡𝐶𝑒 ⇒ 𝑡 ∉ 𝑇 ′} ∪ {𝑒𝑑 }
20: 𝑇 ← (𝑇 \𝑇 ′) ∪ {𝑡𝑑 }
21: 𝑠 ← 𝜏 (𝑙)
22: 𝐶 ← {(𝑛1, 𝑛2) ∈ 𝐶 | 𝑛1 ∉ 𝑇 ′ ∧ 𝑛2 ∉ 𝑇 ′} ∪ {(𝑠, 𝑡𝑑), (𝑡𝑑 , 𝑒𝑑)}
23:

24: 𝐹 ′
𝑖𝑛
← {(𝑑, 𝑡 ′) ∈ 𝐹 | 𝑡 ′ ∈ 𝑇 ′ ∨ ∃𝑡𝑔 ∈ 𝑇 ′ : 𝑡 ′ ∈ 𝜎 (𝑡𝑔) ∩𝑇 }

25: 𝐹 ′𝑜𝑢𝑡 ← {(𝑡 ′, 𝑑) ∈ 𝐹 | 𝑡 ′ ∈ 𝑇 ′ ∨ ∃𝑡𝑔 ∈ 𝑇 ′ : 𝑡 ′ ∈ 𝜎 (𝑡𝑔) ∩𝑇 }
26: 𝐹 ← 𝐹 \ (𝐹 ′

𝑖𝑛
∪ 𝐹 ′𝑜𝑢𝑡)

27: 𝐹 ← 𝐹 ∪ {(𝑡𝑑 , 𝑓 ′𝑖𝑛) | 𝑓
′
𝑖𝑛
∈ 𝐹 ′

𝑖𝑛
} ∪ {(𝑓 ′𝑜𝑢𝑡 , 𝑡𝑑) | 𝑓 ′𝑜𝑢𝑡 ∈ 𝐹 ′𝑜𝑢𝑡 }

28: end procedure

29: procedure PurgeExcludedDataObjects
30: 𝐷′ ← {𝑑 ∈ 𝐷 | include𝑣 (𝑑) = 𝑓 𝑎𝑙𝑠𝑒}
31: 𝐹 ′

𝑖𝑛
← {(𝑑′, 𝑥) ∈ 𝐷′ ×𝑇 | 𝑑′𝐹𝑥}

32: 𝐹 ′𝑜𝑢𝑡 ← {(𝑥, 𝑑′) ∈ 𝑇 × 𝐷′ | 𝑥𝐹𝑑′}
33: 𝐹 ← 𝐹 \ (𝐹 ′

𝑖𝑛
∪ 𝐹 ′𝑜𝑢𝑡)

34: 𝐷 ← 𝐷 \ 𝐷′
35: end procedure

consisting of a start event, a task that represents the abstracted

tasks of that process layer, and an end event (lines 18 - 22). Data

flows are handled independently from control flows. Thus, all data

objects that previously were associated with an abstracted (hidden)

task, get re-associated/-connected to newly created “dummy” task

that replaces the latter (lines 24 - 27).

We have identified another algorithm variant where the creation

of such a “dummy” process is skipped. Instead, the abstracted ele-

ments are represented by the wrapping group task and data objects

that used to be connected to the abstracted tasks are re-associated

with the group task.

To simplify visualization and avoid overlapping elements, we

aim to solely remove or overwrite existing BPMN elements without

7

introducing new ones. Given that a top-level process typically only

has a pool as its enclosing element, which in contrast to tasks cannot

be the target of data associations, the pool is abstracted as a dummy

process. The same applies to incoming data associations from other

pools. This approach offers the advantage of retaining meaningful

data object associations within the diagram, as data objects cannot

be associated with black-box pools.

Based on this BPMN abstraction method we can in practice filter

out sensitive process elements from shared process model views

based on the regular access control of the resources generated by

the process model instances.

Sharing Context-dependent Abstractions. As discussed in Section 4,

we enable policies to define a context scope, which can automatically

inform which parts of a process model and the associated data

resources should be shared as part of a given data exchange. This

can then be used to identify insensitive resources as the input for

our hierarchical abstraction algorithm.

6 DATA ECOSYSTEM REALIZATION
To use the previously discussed access policies and automate interor-

ganizational data exchange, we map the process model concepts

to data exchange primitives in executable software. Specifically,

we base our realization on the FactStack by Gleim et al. [12]. The

FactStack provides exchange mechanism for data resources based

on semantic and standardized web technologies. In the underlying,

resource-based FactDAG data model [11], each revision of a ver-

sioned resources is called a Fact. Authorities model organizations,

which are responsible for their data. Each Fact is persistently iden-

tified by a triple consisting of an authorityID, a resourceID and a

revisionID. In the FactStack implementation, FactIDs are realized

as URIs, which are resolvable through HTTP(S). Each sovereign

authority provides managed access to their data via a Linked Data

Platform (LDP) server. The FactDAG also provides a provenance

model aligned with PROV [24], which links process steps and their

executions to Facts across organizational boundaries. By combining

persistent identifiers, provenance, and web-based data access the

resulting FactDAG provides sovereign data exchange and tracing

of data origin, e.g., along supply chains.

Identifiers. To implement process-model based access control on

top of the FactStack, we need to correctly associate data objects

in the process model with actual data stored in the FactDAG. We

do so by defining custom BPMN attributes, which assign FactIDs

to modeling objects in BPMN. As discussed in Section 3, we as-

sign authorityIDs to pools in BPMN, expressing ownership of a

certain organization over processes and data contained in the pool.

The FactDAG represents a retrospective model of created data and

executed processes, while process models represent prospective

templates on how data should be generated. Specifically, process

models may be instantiated and executed multiple times. If a data

object is the output of an activity, each execution may lead to a

separate data object. Therefore, data objects in BPMN do not relate

to individual data points, but one data point per process instance, i.e.,
for each execution of the process, a different data element may be

referenced. Therefore, the abstract data object in BPMN represents

a collection of concrete, individual elements of data. Subsequently,

we align BPMN data objects with resources in the FactDAG, since

resources can be interpreted as collections of Facts, i.e., each re-

vision to a resource is a Fact, just like each instance of a process

model references a new element of data. Consequently, resourceIDs

always need to be directly associated with a data object in BPMN.

The revisionID is a property of a single Fact. If a data object

has only an incoming edge from a task in the BPMN model, the

revisionID is assigned during the execution of the activity pointing

to the data object. If a data object has an outgoing edge, different

points of data could be referenced, because resources are classes of

Facts and not specific Facts. By associating specific revisionIDs to a

modeled data object, we can reference either a specific revision of

a resource, the whole resource, the most recent revision or even a

range of revisions.

6.1 Expressing Access Control Policies
Since policies are also data objects in BPMN, we model them as

facts in the FactDAG model with a FactID. By referencing the same

FactID, we can reuse policies (or facts in general) in different process

models. We express our access control policy through an ontology.

6.1.1 Group Resources. To represent groups or organizations, we

created a specialization of FactDAG entities named GroupResource
which is represented in the FactStack.

A group can express containment through ac:hasMember at-

tributes whereas the latter has organization Universal Resource

Identifierss (URIs) as range. If group information is requested for

membership of a group, it will always return true if the group is fur-

thermore assigned the type ac:PublicGroup. With that simple, yet

extendable definition of groups we can refer to them from Access

Control Resources (ACRs) that we will present in the following. We

enable organizations to define their own private set of organization

groups. In general, we recommend to always refer to the latest

revision of a group instead of a specific revision. That way groups

can be altered without having to update all resources referring to

them. However, depending on the use case, specific revision can be

referenced to pin a specific group composition for a certain context.

6.1.2 Access Control Resources. ACRs are specializations of re-

sources and are stored in the FactStack, containing the actual poli-

cies. Aside of group resources that are intended to be reused by

multiple access control policies, the access policy for all revisions

of a resource are stored in one ACRs to minimize the number of

required resource requests from the server. Only the most recent

revision of such an ACR is valid and overriding an ACR (or revi-

sioning it) invalidates the previous revision.

With the ac:inheritAccessPermissionsFrom attribute, depen-
dencies can be expressed, pointing to other related target resources

(ResourceReference, that need to be accessible for the target re-

source to be accessible as well. In the following we will discuss

implementation considerations of the access control model in detail.

Access Control. Access control policies are in our model represented

by the AccessControl class. An ACR can have multiple AccessCon-

trols that serve as “Authorization” if they are effective. The target-

Group field contains an identifier, pointing to a group resource,

which the policy should be applied to. A policy is effective when

all conditions are fulfilled by the context: The targetGroup matches

8

the requesting entity. Furthermore, the previously discussed flat

condition combiners ifAll, ifAny and ifNonemust be fulfilled. To

evaluate complex conditions, such as the targetGroup we need to

asynchronously request further resources during evaluation time.

Eventually, the evaluation method returns whether AccessCon-

trol is effective. If it is effective, the accessMode of the policy is

applicable to the target resource for the requesting organization.

Access Modes. To express access modes that an access policy can

assign to a resource for a certain group of users, we introduced the

following modes, each assigned a numeric weight, such that the

more restrictive mode has the higher weight:

(1) ac:Nothing
(2) ac:DiscoverResource
(3) ac:DiscoverResourceRevision
(4) ac:ReadRDF
(5) ac:ReadBinary
(6) ac:Write
(7) ac:Delete

To check if an AccessControl with access mode 𝑥 allows an

operation on the target resource that requires, e.g., access mode

ac:DiscoverResourceRevision, we compare the weight of x𝑤 (𝑥) to the
weight of ac:DiscoverResourceRevision. As we pursue the strategy of

deny until permit in our data sharing approach, the default access

mode is always Nothing. On the other hand, if there are multiple

AccessControls that are effective, the access mode of the most

restrictive one is granted to the target resource.

Conditions. To express conditions, in our implementation we rely

on the Constraint class, similar to odrl:Constraint [16]. It de-
fines two operands that are either literals such as strings, numbers

or dates or the requester authorityID, or placeholders for the cur-

rent date or resource references that need to be evaluated to literals.

Since resource references behave like matchers that return all refer-

ences they could find, we have constructed Constraint in a robust

way that it expects all its operands to evaluate to lists of literals.

It offers primitive operators such as ac:equals, ac:greaterThan,
ac:lessThan, etc. but also set operators ac:in and ac:notIn. If
the operator is set to a primitive operator such as ac:lessThan,
the constraint is fulfilled if and only if all left operand entries

𝐿 combined with all right operand entries 𝑅 fulfill the operator

(∀𝑙 ∈ 𝐿∀𝑟 ∈ 𝑅 : eval(𝑙) ◦ eval(𝑟) with primitive operator ◦). If the
operator is set to a set operator such as ac:in, the constraint is ful-
filled if and only if any left operand entry combined with any right

operand entry fulfills the operator (∀𝑙 ∈ 𝐿∃𝑟 ∈ 𝑅 : eval(𝑙) ◦ eval(𝑟)
with set operator ◦). However, if any operator evaluates to empty,

then the Constraint is never fulfilled.

Access. Through this mapping to the FactDAGmodel, we relate pro-

cess model objects to resolvable identifiers and therefore resources

(data resources, policies and the process models themselves) that

can be accesses via HTTP(S). Similarly our approach could also

be extended with mappings to other data ecosystem frameworks.

While this requires the modification of process models beyond the

current standard, it also enables semantically well defined data shar-

ing operations based on open standards through process models

across systems, infrastructures and organizations. In case of the

process models, each organization can store the pool associated

with the own organization. By modeling third party organizations

in the ownmodel, data access (and model sharing) requests could be

automatically triggered. This connection between process models

and data exchange can already improve the interorganizational data

sharing workflow. In the future, the degree of automation could be

further increased by also using a process execution engine.

7 EVALUATION
With our implementation we demonstrated the feasiblility of pro-

cess model driven data exchange on top of data ecosystem infras-

tructure. To evaluate how well our approach scales with the current

implementation, we test our system with increasingly large pro-

cess model contexts. This evaluation is based on a straightforward,

non-optimized proof of concept implementation, through which

we can discover targets for future performance optimizations.

Experimental Setup. We set up our experiments as follows. First,

we generate collaborative BPMN process models with different

process sizes and populate data resources on multiple FactStack

instances. Afterwards, we create various access control policies on

elements in these processes. From that point on, the system state is

not changed anymore so that each test run takes place under equal

system conditions. To measure the performance, the resources, that

we previously assigned access control policies to, are requested by

multiple organizations and the time needed to execute these evalu-

ation requests is taken for each request individually. In our case,

we decided to base our benchmark on three different organizations.

Finally, the results are plotted as execution time against instance

size. We executed this benchmark with the FactStack server as well

as the client running on one Linux machine.

Dataset. To control the scale of our processes, we generated syn-

thetic models. Due to the structure of our policy evaluation, which

is based on repeated HTTP requests, we identified large models a

potential weak point of our current implementation and focused

our evaluation on scaling the dimension of process control path.

Starting from an empty process model, we created a BPMN gen-

erator that allows to extend that empty process model linearly

elements. As a result, we get BPMN models representing the in-

ternal XML structure while neglecting any graphic visualization

that we do not require four our benchmark. In Figure 5 we show a

schematic view of our test instances. Thereby process task chain for

organization A has varying length and determines the instance size

𝑛. In the following, organization A is named chain owner, organiza-

tion B customer (partial access allowed and C serves as uninvolved

organization whose access request will always be denied.

Results. The results of our performance evaluation are shown in

Figure 6. For three organizations the execution time to answer a

request was measured for varying instance sizes. The plots indicate

the average response time over 10 executions on each test instance.

Figure 6a shows this graph for the data owner, Organization

A. The execution time is constant and thus independent of the

instance size. Additionally the execution time is, compared to the

diagrams we will see in the following, small. This is due to the

fact that our access control always grants data owners access to

resources based on their own AuthorityID. Thus we have a constant

runtime independent of the size of the process instance.

9

C
om

pa
ny

 A

Activity
X

Data1

Activity
Y

C
om

pa
ny

 B

Activity
1

Data3

Activity
2

... Activity
n

Data2

C
om

pa
ny

 C

Activity
Z

Figure 5: Schematic view of our BPMN collaboration test
instance.

Figure 6b shows the execution time for a request from a user (Or-

ganization B) that is granted access to the data resource associated

with its own process pool but not to others. A linear dependency

can be observed for both cases (access denied and access granted).

However, in the case of a non accessibility the execution time is

lower than in the case of accessibility. The lower execution time

can be explained by the prohibition of downloading the element

from the server. The accessibility of a resource for an organization

is dependent on the existence of a data association going from the

target resource to the pool of the respective requesting organization,

which is the case for organization B. Since the policy evaluation

starts from the requested data resource (Data2) the algorithm tra-

verses the FactDAG in order to request the existence of a respective

data association, that fulfills the access condition.

In Figure 6c the execution time for a user request, where a user

doesn’t have access to any of the requested resources (Organization

C), we can observe that the execution time shows again a linear

dependency of the instance size.

Impact. As shown in the previous section, the execution time of our

policy evaluation reusing BPMN relations decreases with increasing

instance size and are high overall. This massively constrains the

scalability of of our current, FactStack-based implementation. In the

following, we will discuss possibilities to increase this performance.

Our architecture is not optimized to minimize the number of

requests made to determine the access permissions of a resource.

Thus, time-consuming redundant requests to the same resource are

done even, e.g., to the same target resource while evaluating the

access control resource. One could tackle that issue if one would

consider the state of the FactDAG as frozen for a batch request

such as instantly succeeding process model abstractions. A cache

map of relevant resources could be kept for a short while. Further,

through realizing the retrieval of policies directly through server-

side database requests instead of resource retrieval through the LDP

interface, the overall performance could be increased substantially.

8 FUTUREWORK
The access control policy framework presented in this paper pro-

vides one building block towards our vision of tightly integrated

process data and exchange workflows. Next, we intend to focus on

improving the user experience and degree of automation.

Data Exploration and Collaboration. While our current implementa-

tion provides functional data exchange capabilities by utilizing the

FactStack data ecosystem, it lacks a integrated user interface. To

lower the barriers to data exchange, users need to be able to easily

explore available data and seamlessly integrate it into their local

workflows. In the future, we intend to build a distributed web appli-

cation which enables collaborative modeling of interorganizational

workflows and data exchange, e.g., by utilizing existing tools such

as bpmn.io [4]. This system could automatically issue data access

requests to collaborators, based on a provided collaboration model

and provided different, abstracted views to the process models in

an interactive environment. By integrating the system with a data

catalog, we could automatically publish process (meta-) data and

in turn use cataloged data in our process models.

Interoperable Automation and Streaming Data. Currently, our data
model assumes data at rest with identifiable data resources, per-

sisted in some kind of data store. While this model, including the

versioning of resources, covers many data sharing scenarios, it can-

not handle dynamic, near-realtime collaboration scenarios. In the

future, we want to extend our model to data stream sources with

the goal to dynamically connect data processing pipelines across

system-, infrastructure-, and organizational boundaries. Further,

our current implementation does not integrate with any sort of

execution engine to process data. To connect automated processes

and build data pipelines across organizations, we also need to con-

nect our approach to the underlying execution engines and enable

data and control to flow interoperably between these independent

systems. To support the necessary data interoperability, we want

to look at shape-based solutions to model and validate evolving

data generated during processes, such as PALADIN [8] and align

our interorganizational, process model-based approach with data

shape languages for access control, such as SHACL-ACL [32].

9 CONCLUSION
The increasing drive towards integration of processes across or-

ganizational boundaries and the growing amount of data, e.g., in

the manufacturing industry [29], leads to the need for frictionless,

integrated exchange of interoperable data. Addressing this need,

we argue that process models can play a crucial role in interorgani-

zational cooperation in many industries, such as research, health

or manufacturing. Specifically, cross-organizational processes can

be visualized and data exchange can be automated through inter-

active and cooperative modeling, leading to increased collection,

interconnection and sharing of context information, which enables

collaborators to assess data quality by tracing its provenance. In

this paper, we present process model-based access control policies

as a core building block towards a fully integrated process data

management system. We present a BPMN modeling extension to

visually assign sharing policies in process models and by explicitly

10

20 40 60 80 100
Instance Size (path length)

0.06

0.07

0.08

0.09

0.10

0.11

Ex
ec

ut
io

n
Ti

m
e

[s
]

(a) Policy evaluation times for org A.

20 40 60 80 100
Instance Size (path length)

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n
Ti

m
e

[s
]

non accessible
accessible

(b) Policy evaluation times for org B.

20 40 60 80 100
Instance Size (path length)

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n
Ti

m
e

[s
]

(c) Policy evaluation times for org C.

Figure 6: Policy evaluation times for all organizations in our test model, over different model sizes.

considering access to context information in form of process mod-

els, we enhance the quality of the shared data. Therefore, with our

access policy framework, models define the scope of a data shar-

ing operation and are also part of the shared context information,

supporting both, automation and data quality.

Overall, our work contributes to a vision of flexible and interop-

erable cross-organizational collaboration and tight integration of

processes and their data, utilizing the context information provided

by process models to enhance data exchange.

ACKNOWLEDGMENTS
Funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under Germany’s Excellence Strategy - EXC-

2023 Internet of Production - 390621612.

REFERENCES
[1] Adam Bates, Ben Mood, Masoud Valafar, and Kevin Butler. 2013. Towards Secure

Provenance-Based Access Control in Cloud Environments. In Proceedings of the
Third ACM Conference on Data and Application Security and Privacy (CODASPY
’13). Association for Computing Machinery, New York, NY, USA, 277–284. https:

//doi.org/10.1145/2435349.2435389

[2] Daniel Beverungen, Joos C. A. M. Buijs, Jörg Becker, Claudio Di Ciccio, Wil M. P.

van der Aalst, Christian Bartelheimer, Jan vom Brocke, Marco Comuzzi, Karsten

Kraume, Henrik Leopold, Martin Matzner, Jan Mendling, Nadine Ogonek, Till

Post, Manuel Resinas, Kate Revoredo, Adela del-Río-Ortega, Marcello La Rosa,

Flávia Maria Santoro, Andreas Solti, Minseok Song, Armin Stein, Matthias Stierle,

and Verena Wolf. 2021. Seven Paradoxes of Business Process Management in

a Hyper-Connected World. Business & Information Systems Engineering 63, 2

(April 2021), 145–156. https://doi.org/10.1007/s12599-020-00646-z

[3] Matthieu Bosquet. 2022. Access Control Policy (ACP). https://solidproject.org/

TR/acp

[4] bpmn.io. 2023. Web-based tooling for BPMN, DMN, CMMN, and Forms | bpmn.io.

Retrieved August 3, 2024 from https://bpmn.io/

[5] Anila Sahar Butt and Peter Fitch. 2021. A Provenance Model for Control-flow

Driven Scientific Workflows. Data & Knowledge Engineering 131 (2021), 101877.

[6] IssamChebbi, SchahramDustdar, and Samir Tata. 2006. The view-based approach

to dynamic inter-organizational workflow cooperation. Data & Knowledge
Engineering 56, 2 (2006), 139–173. https://doi.org/10.1016/j.datak.2005.03.008

[7] Roxana Danger, Vasa Curcin, Paolo Missier, and Jeremy Bryans. 2015. Access

Control and View Generation for Provenance Graphs. Future Generation Com-
puter Systems 49 (Aug. 2015), 8–27. https://doi.org/10.1016/j.future.2015.01.014

[8] Antonio Jesus Diaz-Honrubia, Philipp D. Rohde, Emetis Niazmand, Ernestina

Menasalvas, andMaria-Esther Vidal. 2024. PALADIN: A process-based constraint

language for data validation. Information Fusion 112 (2024), 102557. https:

//doi.org/10.1016/j.inffus.2024.102557

[9] Marcel Fassnacht, Carina Benz, Daniel Heinz, Jannis Leimstoll, and Gerhard

Satzger. 2023. Barriers to Data Sharing among Private Sector Organizations. In

56th Hawaii International Conference on System Sciences, Vol. 56. ScholarSpace,
Maui, 3695–3704. https://hdl.handle.net/10125/103084

[10] Sandra Geisler, Maria-Esther Vidal, Cinzia Cappiello, Bernadette Farias Lóscio,

Avigdor Gal, Matthias Jarke, Maurizio Lenzerini, Paolo Missier, Boris Otto, Elda

Paja, Barbara Pernici, and Jakob Rehof. 2022. Knowledge-DrivenData Ecosystems

Toward Data Transparency. Journal of Data and Information Quality 14, 1 (March

2022), 1–12. https://doi.org/10.1145/3467022

[11] Lars Gleim, Jan Pennekamp, Martin Liebenberg, Melanie Buchsbaum, Philipp

Niemietz, Simon Knape, Alexander Epple, Simon Storms, Daniel Trauth, Thomas

Bergs, Christian Brecher, Stefan Decker, Gerhard Lakemeyer, and Klaus Wehrle.

2020. FactDAG: Formalizing Data Interoperability in an Internet of Production.

IEEE Internet of Things Journal 7, 4 (April 2020), 3243–3253. https://doi.org/10.

1109/JIOT.2020.2966402

[12] Lars Gleim, Jan Pennekamp, Liam Tirpitz, Sascha Welten, Florian Brillowski, and

Decker Stefan. 2021. FactStack: Interoperable Data Management and Preservation
for the Web and Industry 4.0. Gesellschaft für Informatik, Bonn. https://dl.gi.de/

handle/20.500.12116/35804

[13] Vincent C. Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth San-

dlin, Robert Miller, and Karen Scarfone. 2014. Guide to Attribute Based Access
Control (ABAC) Definition and Considerations. Technical Report NIST SP 800-

162. National Institute of Standards and Technology. NIST SP 800–162 pages.

https://doi.org/10.6028/NIST.SP.800-162

[14] Hauke Hund, Reto Wettstein, Christian M Heidt, and Christian Fegeler. 2021.

Executing Distributed Healthcare and Research Processes - The HiGHmed Data

Sharing Framework. Studies in health technology and informatics 278 (May 2021),

126–133. https://doi.org/10.3233/shti210060

[15] Renato Iannella and Serena Villata. 2018. ODRL Information Model 2.2. W3C Rec-

ommendation. W3C. https://www.w3.org/TR/2018/REC-odrl-model-20180215/.

[16] Renato Iannella and Serena Villata. 2018. ODRL Information Model 2.2. https:

//www.w3.org/TR/odrl-model/

[17] Girish S. Joglekar, Arun Giridhar, and Gintaras Reklaitis. 2014. A Workflow Mod-

eling System for Capturing Data Provenance. Computers & Chemical Engineering
67 (Aug. 2014), 148–158. https://doi.org/10.1016/j.compchemeng.2014.04.006

[18] Ilka Jussen, Frederik Möller, Julia Schweihoff, Anna Gieß, Giulia Giussani, and

Boris Otto. 2024. Issues in inter-organizational data sharing: Findings from

practice and research challenges. Data & Knowledge Engineering 150 (2024),

102280. https://doi.org/10.1016/j.datak.2024.102280

[19] Myong H. Kang, Joon S. Park, and Judith N. Froscher. 2001. Access control

mechanisms for inter-organizational workflow. In Proceedings of the Sixth ACM
Symposium on Access Control Models and Technologies (Chantilly, Virginia, USA)
(SACMAT ’01). Association for Computing Machinery, New York, NY, USA, 66–74.

https://doi.org/10.1145/373256.373266

[20] Hervé Legenvre and Ari-Pekka Hameri. 2023. The Emergence of Data Sharing

along Complex Supply Chains. International Journal of Operations & Production
Management ahead-of-print, ahead-of-print (Jan. 2023), 292–297. https://doi.

org/10.1108/IJOPM-11-2022-0729

[21] Maria Leitner and Stefanie Rinderle-Ma. 2014. A systematic review on security

in Process-Aware Information Systems – Constitution, challenges, and future

directions. Information and Software Technology 56, 3 (2014), 273–293. https:

//doi.org/10.1016/j.infsof.2013.12.004

[22] Maria Linnartz, Soo-Yon Kim, Martin Perau, Tobias Schröer, Sandra Geisler, and

Stefan Decker. 2022. Unternehmensübergreifendes Datenqualitätsmanagement-

Entwicklung eines Rahmenwerks zur Analyse der Stammdatenqualität in

Kunden-Lieferanten-Beziehungen. Zeitschrift für wirtschaftlichen Fabrikbetrieb
117, 12 (2022), 851–855. https://doi.org/10.1515/zwf-2022-1167

[23] Cong Liu, Hua Duan, QingTian Zeng, MengChu Zhou, FaMing Lu, and JiuJun

Cheng. 2019. Towards Comprehensive Support for Privacy Preservation Cross-

Organization Business Process Mining. IEEE Transactions on Services Computing
12, 4 (July 2019), 639–653. https://doi.org/10.1109/TSC.2016.2617331

11

https://doi.org/10.1145/2435349.2435389
https://doi.org/10.1145/2435349.2435389
https://doi.org/10.1007/s12599-020-00646-z
https://solidproject.org/TR/acp
https://solidproject.org/TR/acp
https://bpmn.io/
https://doi.org/10.1016/j.datak.2005.03.008
https://doi.org/10.1016/j.future.2015.01.014
https://doi.org/10.1016/j.inffus.2024.102557
https://doi.org/10.1016/j.inffus.2024.102557
https://hdl.handle.net/10125/103084
https://doi.org/10.1145/3467022
https://doi.org/10.1109/JIOT.2020.2966402
https://doi.org/10.1109/JIOT.2020.2966402
https://dl.gi.de/handle/20.500.12116/35804
https://dl.gi.de/handle/20.500.12116/35804
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.3233/shti210060
https://www.w3.org/TR/odrl-model/
https://www.w3.org/TR/odrl-model/
https://doi.org/10.1016/j.compchemeng.2014.04.006
https://doi.org/10.1016/j.datak.2024.102280
https://doi.org/10.1145/373256.373266
https://doi.org/10.1108/IJOPM-11-2022-0729
https://doi.org/10.1108/IJOPM-11-2022-0729
https://doi.org/10.1016/j.infsof.2013.12.004
https://doi.org/10.1016/j.infsof.2013.12.004
https://doi.org/10.1515/zwf-2022-1167
https://doi.org/10.1109/TSC.2016.2617331

[24] Paolo Missier and Luc Moreau. 2013. PROV-DM: The PROV Data Model. W3C

Recommendation. W3C. http://www.w3.org/TR/2013/REC-prov-dm-20130430/.

[25] Aya Mohamed, Dagmar Auer, Daniel Hofer, and Josef Küng. 2021. Extended

Authorization Policy for Graph-Structured Data. SN Computer Science 2, 5 (June
2021), 351. https://doi.org/10.1007/s42979-021-00684-8

[26] OMG. 2011. Business Process Model and Notation (BPMN), Version 2.0. http:

//www.omg.org/spec/BPMN/2.0

[27] Boris Otto, Sebastian Steinbuß, Andreas Teuscher, and Steffen Lohmann. 2019.

IDS Reference Architechture Model, Version 3.0. https://internationaldataspaces.

org/wp-content/uploads/IDS-Reference-Architecture-Model-3.0-2019.pdf

[28] Jaehong Park, Dang Nguyen, and Ravi Sandhu. 2012. A Provenance-Based Access

Control Model. In 2012 Tenth Annual International Conference on Privacy, Security
and Trust. IEEE, Paris, France, 137–144. https://doi.org/10.1109/PST.2012.6297930

[29] Jan Pennekamp, René Glebke, Martin Henze, Tobias Meisen, Christoph Quix,

Rihan Hai, Lars Gleim, Philipp Niemietz, Maximilian Rudack, Simon Knape,

Alexander Epple, Daniel Trauth, Uwe Vroomen, Thomas Bergs, Christian Brecher,

Andreas Bührig-Polaczek, Matthias Jarke, and Klaus Wehrle. 2019. Towards an

Infrastructure Enabling the Internet of Production. In 2019 IEEE International
Conference on Industrial Cyber Physical Systems (ICPS). IEEE, Piscataway, NJ,
31–37. https://doi.org/10.1109/ICPHYS.2019.8780276

[30] Pille Pullonen, Raimundas Matulevičius, and Dan Bogdanov. 2017. PE-BPMN:

Privacy-Enhanced Business Process Model and Notation. In Business Process
Management (Lecture Notes in Computer Science), Josep Carmona, Gregor Engels,

and Akhil Kumar (Eds.). Springer International Publishing, Cham, 40–56. https:

//doi.org/10.1007/978-3-319-65000-5_3

[31] Mateo Ramos Merino, Luis M. Álvarez-Sabucedo, Juan M. Santos-Gago, and

Francisco de Arriba-Pérez. 2019. A Pattern Based Method for Simplifying a

BPMN Process Model. Applied Sciences 9, 11 (Jan. 2019), 2322. https://doi.org/

10.3390/app9112322

[32] Philipp D. Rohde, Enrique Iglesias, and Maria-Esther Vidal. 2023. SHACL-ACL:

Access Control with SHACL. In The Semantic Web: ESWC 2023 Satellite Events
(Lecture Notes in Computer Science). Springer Nature Switzerland, Cham, 22–26.

https://doi.org/10.1007/978-3-031-43458-7_4

[33] Mattia Salnitri, Fabiano Dalpiaz, and Paolo Giorgini. 2017. Designing Secure

Business Processes with SecBPMN. Software & Systems Modeling 16, 3 (July

2017), 737–757. https://doi.org/10.1007/s10270-015-0499-4

[34] Robert H. Schmitt, Matthias Bodenbenner, Tobias Hamann, Mark P. Sanders,

Mario Moser, and Anas Abdelrazeq. 2024. Leveraging measurement data quality

by adoption of the FAIR guiding principles. tm - Technisches Messen (2024).

https://doi.org/doi:10.1515/teme-2024-0040

[35] Sergey Smirnov. 2011. Business Process Model Abstraction. Ph.D. Dissertation.
Universität Potsdam. https://publishup.uni-potsdam.de/frontdoor/index/index/

docId/5807

[36] Sergey Smirnov, Hajo A. Reijers, and Mathias Weske. 2011. A Semantic Approach

for Business Process Model Abstraction. In Advanced Information Systems Engi-
neering (Lecture Notes in Computer Science), Haralambos Mouratidis and Colette

Rolland (Eds.). Springer, Berlin, Heidelberg, 497–511. https://doi.org/10.1007/978-

3-642-21640-4_37

[37] Lianshan Sun, Jaehong Park, Dang Nguyen, and Ravi Sandhu. 2016. A

Provenance-Aware Access Control Framework with Typed Provenance. IEEE
Transactions on Dependable and Secure Computing 13, 4 (July 2016), 411–423.

https://doi.org/10.1109/TDSC.2015.2410793

[38] Christina Tsagkani and Aphrodite Tsalgatidou. 2022. Process Model Abstraction

for Rapid Comprehension of Complex Business Processes. Information Systems
103 (Jan. 2022), 101818. https://doi.org/10.1016/j.is.2021.101818

[39] Wil M. P. Van Der Aalst. 2011. Intra- and Inter-Organizational Process Mining:

Discovering Processes within and between Organizations. In The Practice of
Enterprise Modeling, Wil Van Der Aalst, John Mylopoulos, Michael Rosemann,

Michael J. Shaw, Clemens Szyperski, Paul Johannesson, John Krogstie, and An-

dreas L. Opdahl (Eds.). Vol. 92. Springer Berlin Heidelberg, Berlin, Heidelberg,

1–11. https://doi.org/10.1007/978-3-642-24849-8_1

[40] Joerg Walden, Angelika Steinbrecher, and Maroye Marinkovic. 2021. Digital

Product Passports as Enabler of the Circular Economy. Chemie Ingenieur Technik
93, 11 (2021), 1717–1727. https://doi.org/10.1002/cite.202100121

[41] Sascha Welten, Marius de Arruda Botelho Herr, Lars Hempel, David Hieber,

Peter Placzek, Michael Graf, Sven Weber, Laurenz Neumann, Maximilian Jugl,

Liam Tirpitz, Karl Kindermann, Sandra Geisler, Luiz Olavo Bonino da Silva

Santos, Stefan Decker, Nico Pfeifer, Oliver Kohlbacher, and Toralf Kirsten. 2024.

A Study on Interoperability between Two Personal Health Train Infrastructures

in Leukodystrophy Data Analysis. Scientific Data 11, 1 (June 2024), 663. https:

//doi.org/10.1038/s41597-024-03450-6

[42] Mark D. Wilkinson, Michel Dumontier, I. Jsbrand Jan Aalbersberg, Gabrielle Ap-

pleton,Myles Axton, Arie Baak, Niklas Blomberg, Jan-WillemBoiten, Luiz Bonino

da Silva Santos, Philip E. Bourne, et al. 2016. The FAIR Guiding Principles for

scientific data management and stewardship. Scientific Data 3 (2016), 160018.

https://doi.org/10.1038/sdata.2016.18

[43] Hideya Yoshiuchi, Ikumi Inoue, and Hiroki Miyamoto. 2021. Cross-

Organizational Data Sharing Technology for Data Management Platform in the

Manufacturing Industry. In Proceedings of the 2021 6th International Conference on
Cloud Computing and Internet of Things (CCIOT ’21). Association for Computing

Machinery, New York, NY, USA, 29–35. https://doi.org/10.1145/3493287.3493292

12

https://doi.org/10.1007/s42979-021-00684-8
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
https://internationaldataspaces.org/wp-content/uploads/IDS-Reference-Architecture-Model-3.0-2019.pdf
https://internationaldataspaces.org/wp-content/uploads/IDS-Reference-Architecture-Model-3.0-2019.pdf
https://doi.org/10.1109/PST.2012.6297930
https://doi.org/10.1109/ICPHYS.2019.8780276
https://doi.org/10.1007/978-3-319-65000-5_3
https://doi.org/10.1007/978-3-319-65000-5_3
https://doi.org/10.3390/app9112322
https://doi.org/10.3390/app9112322
https://doi.org/10.1007/978-3-031-43458-7_4
https://doi.org/10.1007/s10270-015-0499-4
https://doi.org/doi:10.1515/teme-2024-0040
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/5807
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/5807
https://doi.org/10.1007/978-3-642-21640-4_37
https://doi.org/10.1007/978-3-642-21640-4_37
https://doi.org/10.1109/TDSC.2015.2410793
https://doi.org/10.1016/j.is.2021.101818
https://doi.org/10.1007/978-3-642-24849-8_1
https://doi.org/10.1002/cite.202100121
https://doi.org/10.1038/s41597-024-03450-6
https://doi.org/10.1038/s41597-024-03450-6
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1145/3493287.3493292

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data in Process Models
	2.2 Process Model Abstractions
	2.3 Modeling Security in Process Models
	2.4 Provenance-Driven Access Control

	3 Modeling Interorganizational Processes with Data Exchange
	4 Process Model-based Access Control
	5 Selective Model Revealing
	6 Data Ecosystem Realization
	6.1 Expressing Access Control Policies

	7 Evaluation
	8 Future Work
	9 Conclusion
	Acknowledgments
	References

