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ABSTRACT

As data changes, it is crucial that predictive models remain robust
even in the presence of anomalies and concept drift. A significant
challenge towards accurately identifying and differentiating be-
tween concept drift and anomalies is due to the lack of real, labeled
datasets containing both types of events. Given the varied types
of anomalies and concept drifts, and the varying distributions in
which they occur in practice, obtaining labelled datasets is challeng-
ing. In this paper, we propose CanGene, a tool for anomaly injection,
and concept drift generation into existing time-series data. CanGene
allows users to specify the types, frequencies, locations, and interac-
tions of injected anomalies and concept drifts according to selected
distributions. We demonstrate CanGene’s capability through a series
of cases using electrocardiogram and weather datasets, illustrating
CanGene’s ability to synthetically replicate real world changes and
anomalies in time series data.

VLDB Workshop Reference Format:

Jongjun Park, Akanksha Nehete, Tammy Zeng, Fei Chiang. A Data
Generator to Explore the Interaction Between Anomalies and Concept
Drift. VLDB 2024 Workshop: 13th International Workshop on Quality in
Databases (QDB’24).

VLDB Workshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/mac-dsl/AnomalyDriftDetection.

1 INTRODUCTION

Data inevitably changes to reflect user activity and preferences,
and changes in the environment. Identifying the inherent patterns
to understand how data changes is a fundamental task in time se-
ries analysis and prediction. The rate at which data changes, the
magnitude of change, and the time duration of the change, are char-
acteristics used to determine whether a data change is normal or
not. When an input data distribution changes from the original data
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distribution, this is often referred to as concept drift [9, 12, 19, 20].
Existing time series, anomaly detection techniques ignore concept
drift, assuming time series concepts are stationary, and that data
values follow a fixed probability distribution [6, 7, 25]. Clearly, this
assumption does not hold in practice as applications and natural
phenomena elicit changes in the underlying distribution. For exam-
ple, temperature changes between seasons demonstrate a gradual
increase from winter to spring, changes in workplace electricity
usage from weekday to weekend exhibit an abrupt decrease due
to a change in employee work patterns, and a company’s stock
price changes due to political and economic events, and investor
sentiment and speculation.

Anomalies and concept drift commonly occur together in prac-
tice. For example, the temperature distribution in an aircraft engine
fluctuates according to changes between take-off (climb), cruising
altitude, turbulence, and landing. During any of these phases and
transitions, mechanical failures (anomalies) may occur causing un-
expected increases in temperature within the engine module. As
another example, in fraud detection over online transactions, hack-
ers frequently change the distribution of fraudulent transactions
to gradually shift over time to avoid detection. However, fraudu-
lent transactions may also contain anomalies, such as abnormally
large/small transaction amounts, or transactions from unusual lo-
cations. The presence of concept drift poses challenges for anomaly
detection in time series. While anomalies are caused by undesirable
changes in the data, differentiating abnormal changes from varying
normal behaviours is difficult due to differing frequencies of oc-
currence, varying time intervals when normal patterns occur, and
identifying similarity thresholds to separate the boundary between
normal vs. abnormal sequences.

Differentiating between concept drifts and anomalies is critical
for accurate analysis as studies have shown that the compounding
effects of error propagation in downstream data analysis tasks lead
to lower detection accuracy and increased overhead due to unneces-
sary model updates [5, 6, 16]. Adopting anomaly detection methods
for drift detection lead to mis-classification and an increased num-
ber of false positives. In contrast, existing drift detection methods
assume a negligible amount of anomalies, or fail to consider them
atall [3, 6, 12, 20].

Recent work by Le and Papotti study the problem of anomaly
detection with change points (based on sudden, abrupt changes)
from a group of distributionally similar sequential data points [17].
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Figure 1: Concept drift and anomalies in real ECG data.
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However, such methods assume that anomalies are short-lived
and independent; and do not consider broader definitions of data
drift. Concept drift and change detection methods have largely
used windowing-based methods that compare overlapping or adja-
cent windows to detect significant changes beyond statistical (test)
thresholds [3, 8]. Techniques for Seasonal Trend Decomposition
are often used to differentiate among seasonal (periodic) patterns,
trends over time, and residuals, but are often adapted to application-
specific changes with respect to events [13], fraud [18], or pat-
terns [2, 24]. Unfortunately, existing work has largely explored
anomaly detection and concept drift detection in isolation [12, 14,
19].

Example 1.1. Figure 1a shows a real data stream of ambulatory
electrocardiogram (ECG) recordings [22]. Heart rhythm problems,
known as arrhythmias, occur when the electrical signals that coor-
dinate the heart’s beats cause the heart to beat too fast (tachycardia),
too slow (bradycardia) or irregularly. However, normal activities
such as exercise and sleep, cause the heart rate to increase and de-
crease, respectively. Differentiating between anomalous and normal
baselines is important towards accurate diagnosis and life-saving
treatment.

The data contains four collective anomalies (in red, labelled A1 -
A4), showing an irregular heart rate, and a concept drift (shaded
in purple), where the heart rate increases, and with similar pat-
tern readings before and after the drift period. Figure 1b shows
a zoomed-in view of a snippet of the ECG readings before and
after the concept drift, occurring at approximately x = 1100 and
x = 4100, respectively (Figure 1a). While the period remains the
same, the concept drift has caused a change from the baseline pat-
tern (shown in dark blue), to a pattern with larger amplitude and
mean (at x = 35,95, shown in orange). Existing techniques mis-
classify these changes as anomalies, leading to an increase in false
positives [6, 21, 26]. In contrast, Figure 1c shows a zoomed-in view
of irregular heart rates, depicted as collective anomaly patterns Al
- A4. Given the similarity of these error distributions, occurring
at irregular times, existing drift detection techniques, largely ig-
noring the presence of anomalies, miscategorize such instances as
recurring data drifts [3, 12, 20].

One of the contributing factors to this problem is the lack of
real, labelled datasets containing both concept drifts and anomalies.

Such datasets are often inaccessible due to privacy constraints in
medical or financial areas, expensive to obtain, or incomplete due to
missing values or only a partial subset of data is available. We often
then resort to synthetic data as an alternative. Generating synthetic
data containing different types of concept drift and anomalies, with
realistic distributions of co-occurrence frequency is challenging.
First, we must understand the characteristics of different types of
anomalies, and different types of concept drift that occur in practice,
and define the corresponding user parameters. Drift can occur in
several forms, each presenting distinct data generation challenges.
Second, dependencies between anomalies, and between drift and
anomalies introduce sequencing constraints, e.g., a drift may induce
or amplify an anomaly to occur.

Anomaly and Concept Drift Types. We consider three types of
anomalies:

(1) Point Anomaly: are individual data points that deviate signif-
icantly from the majority of points in the dataset, this is often
characterized by a large difference in value(s) from nearby data
points;

(2) Collective Anomaly: are a set of data points that together exhibit
anomalous behaviour, while the individual values of these data
points may not be considered anomalous;

(3) Periodic Anomaly: is a collective anomaly that occurs with an
expected regularity (period). We characterize periodic anomalies
as a sub-type of collective given its proliferation in application
settings, e.g., network traffic, and patient health monitoring.

We model three types of concept drifts that commonly occur in
practice:
(1) Gradual Drift: changes happen slowly over time where the
source concept increasingly transitions to the target concept;
(2) Abrupt Drift: characterized by sudden shifts in data patterns
often occurring within a short time period; and .
(3) Recurring Drift: changes from a source concept to a target con-
cept are generated from a distribution that was previously observed,
often with an expected period.

While there exist a wealth of anomaly labelled, real time-series
data [1, 10, 15, 23], these lack labelled instances of concept drift.
Conversely, real data that contain drift are often unlabelled, and
synthetic generators for concept drift, such as MOA [4], do not have
the inherent capabilities to inject different types of anomalies and
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Figure 2: CanGene overview.

their unique properties. With the proliferation of machine learning
models in data quality assessment and re-evaluation, these under-
lying models require realistic datasets containing both concept
drift and anomalies to adapt to evolving data patterns to improve
robustness, and towards more accurate training and validation.

To address these challenges, we introduce CanGene, a Concept
drift and anomaly data Generator, a tool for injecting anomalies
and concept drift into existing time series data, with the following
features:

Type-based anomaly injection: users can specify up to three
types of anomalies: point, collective, and periodic. Anomalies may
be injected independently or drawing from a set of distributions
with varying likelihood.

Type-based concept drift injection: users can specify a number
of abrupt or gradual drifts that span a proportion of the dataset,
with varying lengths, and relative to one or more anomalies. The
latter case is particularly useful when studying interactions be-
tween drift and anomalies, and when changes in normality occur.
Declarative specification: CanGene provides parameterized spec-
ification of anomalies, and the location of drifts relative to anomalies.
Users are able to control the interaction of anomalies and concept
drift by customizing their type, location, frequency and duration.
This specification is important for localized drift and/or anomaly
detection when the local context differs from the global context. We
provide a technical overview and architecture of CanGene, and de-
scribe system features in Section 2, followed by the demonstration
scenarios in Section 3.

2 SYSTEM OVERVIEW

CanGene provide users with an integrated toolkit for anomaly injec-
tion and concept drift generation. The occurrence of anomalies and
drifts, especially in close proximity in a time series, influences the
accuracy of their detection. For example, the accuracy of detecting
an abnormal heart rate depends on whether a person is starting
to transition from walking to running, or whether they are in a
resting state. CanGene provides features to allow users to further
explore these interactions by not only providing users the ability
to specify the type, location and quantity of anomalies and concept

drift, but also the position of generated concept drift relative to the
position of anomalies. This enables users to generate datasets where
drift occurs within a window (either before or after) of an exist-
ing anomaly. We start by introducing the architecture of CanGene
followed by a discussion of each of its components.

Overview. Figure 2 presents the overall architecture of CanGene,
consisting of two main components: (1) anomaly injection and
(2) concept drift generation. Given a set of input time series 7~
= {T} U {T”"}, where {T} represents an input set of time series
to be injected with anomalies, and {T”} denotes the set of time
series from which we will use to generate concept drift. CanGene
partitions a given T* € {T} into n intervals (each separated by
a gap size g). Users specify the quantity of desired anomalies (as
a percentage of the interval size). For each interval, anomalies
are injected according to a specified type, and error distribution,
creating a new (anomalous) dataset T € {T4}.

To inject concept drift into a selected Tj€ {Ta}, we select k
time series {7}, T, ... Tlé} € {T’}, and for each pair (without loss of
generality) {T{, T, }, CanGene creates a drift in T that transitions
from a subset of T} to T,. We consider two types of drift: (i) abrupt,
which occurs during a single time point, and (ii) gradual, which
occurs over a window of w time points. The likelihood of selecting
data points in w from either T} or T, is governed by a sigmoid
function. Users specify the percentage of T that will compose a
concept drift, the duration of each drift, and its location (relative to
existent anomalies). We use the Massive Online Analysis (MOA)
framework to augment the drift generation process, particularly
for gradual drifts, where a source stream is gradually replaced by a
target stream over the duration of the drift [4]. CanGene generates
a new time series, T{* A, C}containing both anomalies and concept
drift.

2.1 Anomaly Injection

We define an anomaly as follows [25].

Definition 2.1. A time series anomaly is a sequence of one or
more data points T; ; where its length |T; j| equals j — i+ 1, and it’s



Table 1: Anomaly-injection parameters (defaults in bold).

Sym. [ Description [ Values
n number of intervals [1,1T*]]
g gap size [1,|T*] - 1]
a % anomalies in an interval (0.00, 1.00] (0.01)
d error distribution Uniform, Gaussian,

Skew-normal
A anomaly subsequence length | (1, |T%|]

s € T" | start of periodic anomaly [1,1T*]]
n additive noise factor [0, 100] (0.5)

value, pattern, or behaviour deviates from the remaining patterns
in time series T.

CanGene considers three types of anomalies:

e Point anomaly: are individual data points that deviate signifi-
cantly from the majority of points in the dataset, and |T; j| = 1.
For example, a point anomaly in online credit card transactions
occurs when a single transaction has an abnormally large dollar
value compared to all other transactions. Clearly, identifying
such point anomalies is important towards recognizing fraudu-
lent behaviour.

o Collective anomaly: are anomalies that involve a group of data
points exhibiting anomalous behavior when considered together,
with |T; j| > 1. The actual values of these points may not be
anomalous, but the presence of the collective set of values indi-
cate the anomaly.

e Periodic anomaly: are a consecutive set of point anomalies that
repeatedly occur with some period with |T; j| > 1. Consider
two examples: (1) in electrocardiogram (ECG) data, a heart ar-
rhythmia is a sequence of anomalies that occurs with a regular
period, at every heartbeat; and (2) in mechanical subsystems in
manufacturing, components exhibit periodic errors due to dete-
riorating components. Collective anomalies subsume periodic
anomalies, and we consider periodic as a sub-type of collective.
We define periodic anomalies separately given their presence
in real datasets, and to allow users to declaratively define the
expected regularity.

CanGene transforms existing data points for a given time series
T* € {T} to anomaly points. CanGene first partitions T* into n
intervals, separated by a gap g. For each interval, we define the
percentage, a of the interval that is anomalous, the type of anom-
alies, and the corresponding parameters including distribution d
(for point and collective anomalies). We assume all intervals are of
equal length, and we inject anomalies into each interval according
to a specified type.

Point Anomalies. We update values in T* to point anomalies by
drawing error values from a given distribution d, where d is one of
Gaussian, Uniform (default), or Skew-normal. For the Gaussian dis-
tribution, for a given mean p and standard deviation o, an anomaly
value will be generated to lie within a y percentage above or below
its original value. For example, for y = 0.5, anomaly values will
be more likely 50% higher than its original value, and for o = 0.2,
approximately 68% of the anomaly values will lie within a 30% to

80% difference of their original values. For the Uniform distribution,
users can specify lower and upper bounds, [/, u], which restrict the
allowed changes of an existing value v € T* to compute v’ € T%,

such that L;v) € [Lu].

The Skew-normal distribution is a continuous probability distri-
bution that generalises the normal distribution to allow for non-
zero skewness. Anomalies often occur in practice with long-tailed
distributions that are not achievable with the aforementioned dis-
tributions. The Skew-normal distribution with a skew parameter
a and an upper bound of u. Specifically, our Skew distribution re-
scales the random number to [0, u], so when u > 0 and a > 0, the
probability density function (pdf) is left-skewed, and conversely,
when u < 0 and a > 0, the pdf is right-skewed. In both cases,
with @ > 0, the pdfs are skewed near 0. To inject an anomaly, we
select r numbers from the given distribution d, e.g., for Uniform
distribution with bounds [0,1], we select r numbers from this range.
We randomly select a value v, € r, and generate the anomaly value
asov; - (1+0,) foraovy € T .

Periodic Anomalies. CanGene creates periodic anomalies by first
selecting a sequence of points starting at a given point s € T*
(within an interval), for a duration of length A. We then add Gauss-
ian white noise with mean y = 0, and standard deviation o = 7
to generate an anomaly sequence Ts’fs+ e This sequence T;Jr 3 is
randomly placed within the interval a - |T*|/A times, such that the
total duration of all periodic anomalies does not exceed a.

Collective Anomalies. For an interval, CanGene randomly selects
a starting point s; for each collective anomaly, and selects all subse-
quent points up to length A to modify. Similar to point anomalies,
error values follow one of three distributions (Gaussian, Uniform or
Skew-normal), where lower and upper bounds can be specified to
restrict the range of error values for the Uniform and Skew-normal
distributions. For each point v, € Ts*, s in the collective anomaly,
we generate error values by selectiflg r numbers from the given
distribution d. We randomly select a value v, € r, and generate the
anomaly value as vy, * vr. The total length of all collective anomaly
durations does not exceed a.

Summary. Table 1 summarizes the list of parameters used during
anomaly injection. CanGene empowers users to control the type,
location, and quantity of injected anomalies at a more fine-grained,
interval-based manner. Data points are randomly selected for error
injection according to a given distribution d, such that no more than
a percentage of the interval is anomalous. CanGene allows users
to generate realistic error scenarios containing different anomaly
types, following different distributions at different points in time.
For example, Figure 9 shows an anomaly injection case where point
anomalies are injected for 1% of the |T*| following a Uniform distri-
bution, then collective anomalies following a Gaussian distribution
with (z = 1,0 = 0.1) for 1% of the first interval, and lastly, periodic
anomalies for 5% of the second interval with a = 0.5 noise factor.
Anomalies often do not occur in isolation, but in conjunction with
concept drift reflecting seasonality trends, changes in the environ-
ment, and user behaviour. We describe how CanGene generates
concept drift relative to anomalies next.
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2.2 Drift Generation

Given a time series T;‘“ with anomalies, CanGene injects concept
drift into T, by combining two given data streams, without loss of
generality, {T{, T, }, a primary and a secondary stream, representing
the source and target concepts, respectively. We define concept drift
as follows [20].

Definition 2.2. A concept drift at time ¢ is defined as the change
of the joint probability of feature vector X and label y at time ¢,
denoted as 3t : P+(X,y) # Pr+1(X, y), where the joint probability
can be decomposed as P; (X, y) = P+(X) - Pr(y|X).

Informally, a concept drift is defined as the transition from a
source concept (primary data stream) to a target concept (secondary
data stream). In CanGene, we define parameters to specify the centre
of the drift at a time point ¢, and the drift spans width w, as shown
in Figure 3. To study the interaction of anomalies and concept
drift, CanGene enables users to specify the location of a concept
drift relative to the position (before or after) of existent anomalies.
CanGene considers three types of concept drift:

o Abrupt drift: An abrupt (or sudden) drift is defined as a con-
cept drift that occurs suddenly at an exact timestamp, without a
transitional period. In CanGene, an abrupt drift occurs when the
transition from the source concept to the target occurs suddenly
at a particular point in time (w = 1).

o Gradual drift: A gradual drift is the transformation from a start-
ing concept to an ending concept over a certain period of time.
During this period, intermediate concepts may appear, which
can be selected either the starting or ending concept depending
on their proximity. A gradual drift occurs when a new concept
gradually replaces an old one over an extended period of time
(w>1).

o Recurring drift: A recurring drift is a phenomenon where statisti-
cal or sequential patterns change over time, and then re-appear
after some duration. This occurs when the properties of the tar-
get concept change over time, but revert to a previous state (e.g.,
network traffic before and after the start of a new school year).

Methodology. Each concept drift is generated by randomly select-
ing a pair of distinct streams from {T’}. Let C denote the percentage
of T that will be used to generate concept drift, nc the number of
concept drifts in T3, and C4 denote the percentage of the number
of drifts occurring before an anomaly. We randomly select candi-
date anomalies to generate drift before their occurrence in T,. We
generate drift before an anomaly by selecting a position ¢ to inject

Table 2: Concept drift generation parameters (defaults in
bold).

Sym. [ Description [ Values

nc number of concept drifts | any > 1, 3

C percentage of drift in T;; 0.05, 0.2, 0.35, 0.5, 0.65, 0.8
Ca percentage of drift 0, 0.25, 0.5, 0.75, 1
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Figure 5: Sample drift before anomalies (ECG data).

drift that is within % time units before an anomaly occurs. The
sum of all concept drift durations over the time series length equals

nc

C= Zli;l* |W', e.g., the sum of the (yellow) durations as shown in
A

Figure 4.

To generate the transition from the source concept to the sec-
ondary concept, CanGene uses the Massive Online Analysis (MOA)
platform, a software environment for implementing and testing
evolving data streams [4]. Given two data streams, {Tl’ , TZ’ }, a con-
cept drift C is generated by joining {T/,T,} as C = T} ;" T;.
Based on the sigmoid function, we select C at time ¢ with width w
as one of T} or T, with probability according to Equation 1.

PIC(n) =T/ (1)] = e B0 (1 4 e7HE0)

PIC(t) = Ty ()] = 1/ (1+ ¢~ (=0 v
i) = L)l = +e )

Figure 5 shows a sample concept drift (denoted in yellow), oc-
curring before the anomalies (denoted in red). The concept drift
transitions gradually from the source concept (denoted in blue)
towards an increasingly larger proportion of the target concept
(shown in purple). Table 2 summarizes the parameters used for con-
cept drift generation. The datasets and CanGene code are publicly
available on Github!.

!https://github.com/mac-dsl/AnomalyDriftDetection
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3 DEMONSTRATION

We present three scenarios that will allow users to interact with
CanGene to experience its anomaly injection and data generation
features. We also demonstrate the utility of our datasets by evaluat-
ing three existing anomaly detection baselines. Our results show
that the baseline performance decreases as the presence of concept
drift increases in the data.

Datasets. Our demonstration will feature the use of two real datasets:
(1) ECG dataset: describes patient electrocardiograms obtained from
the MIT-BIH Arrhythmia database [22]. Anomalies represent ven-
tricular premature contractions.

(2) Weather dataset: hourly, geographically aggregated temperature
recording of European countries obtained from the NASA MERRA-
2 [11]. The dataset records timestamp, average temperature, and
radiation levels from 1960 to 2020. However, for our demo, we will
focus on each country’s temperature reading from 2017 to 2020. To
better exemplify the transition (drift) between seasons, we selected
countries with different climates: Greece (GR, warm), Norway (NO,
cool), and Germany (DE, moderate). CanGene reads input streams
in either *.csv or x.arff formats.

We first introduce users on how to setup and configure CanGene
parameters. We then present the first scenario to add point anom-
alies over the entire time series T* to obtain T;. We will then divide
T} into two intervals, injecting collective anomalies in the first
interval, followed by periodic anomalies in the second interval. We
aim to generate anomalies that replicate severe weather events
such as hurricanes, or snow storms occurring at a single time point

CanGene
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Figure 8: UI parameter configuration for drift generation.

(point anomalies), and weather events such as rainstorms, and heat
waves, which span for longer durations (collective anomalies), and
re-occur each year (periodic anomalies). In the second scenario, we
demonstrate how drifts can be generated between these climates to
simulate changes between the seasons, from cool to moderate cli-
mates (Fall season), and from cool to warm temperatures (Summer
season). Lastly, we evaluate three recent baseline anomaly detec-
tion algorithms [6, 7, 21], showing their sensitivity and decreasing
performance as the presence of concept drift increases in the data.

User Interface. Figure 6 shows the CanGene user interface. Users
first load their input data in either *.csv or *.arff format, and
then specify anomaly injection parameters such as the interval and
gap sizes (Step 1). For each interval, users specify the anomaly type,

## Define '# of Steps' ## Define all types of Anomaly ## Drift params
anomaly_params: drift_params:
## 1st step: one-interval (point) n_drift: 5
" - type: 'point’ k p_drift: 0.01
nt 2 distribution: ‘'uniform’ p_before: 0.1
gap_size: 2000 upperbound: 0.5 sub_dir: ‘demo’

percentage:
Define .. num_values: 100 K
anomaly- ## 2nd step: for 2-intervals

## (1) 1st interval (collective)

typeSfor (- type: 'collective' N
each interval distribution: 'gaussian’
in each step mu: @

sigma: 0.2

percentage: 0.01
num_values: 50
\__length: 6 J
## (2) 2nd interval (sequential)
(- type: 'periodic’ !
noise_factor: 0.5
start: 2232 ## 24%31x3
percentage: 0.05
length: 24

Figure 9: Example configuration file (config.yaml).
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Figure 10: Injected anomalies reflecting anomalous weather events.

the error distribution, the percentage of errors to inject, and the
lower and upper bounds (Step 2 and Step 3). Figure 7 shows sam-
ple generated collective anomalies with uniform distribution (top),
and point anomalies with Gaussian distribution (bottom). These
(labelled) anomaly injected time-series are then used to generated
concept drifts. Figure 8 shows the parameter configuration for drift
generation where users specify the type of drift, quantity, and the
percentage of the drift that occurs before an anomaly (Step 1). The
generated drifts are shown in Step 2, and a zoomed-in version shows
a gradual drift (Step 3).

Parameter Configuration. CanGene also provides a configura-
tion file where users may specify and tune parameters, as shown
in Figure 9. Each interval may be specified via ‘anomaly_step’
with ‘num_intervals’ and ‘gap_size’. All anomaly types and their
corresponding parameters are defined in ‘anomaly_params’. Drift
generation parameters are defined in ‘drift_params’. Users may
input the configured *.yaml configuration file into the CanGene
user interface.

Case 1: Anomalous weather events. We simulate anomalous
weather events in a two-phase approach: (1) injecting point anom-
alies to represent extreme weather events such as thunderstorms,
snow storms, extreme heat that cause severe changes in tempera-
ture; and (2) seasonal weather events such as monsoons and heat-
waves which span longer time duration, and re-occur within a
season or within a year, represented by collective and periodic
anomalies, respectively.

We will demonstrate adding point anomalies throughout T%,
and then divide the resulting T into two intervals to inject collec-
tive and periodic anomalies to simulate more seasonal and recur-
ring weather events. Figure 10a shows injected anomalies over the
Greece (GR), Norway (NO), and Germany (DE) temperature data
over a three-year span, and the collective and periodic anomalies in
the first and latter 1.5 years, respectively. Figure 10b (left) shows a
zoomed-in view of a 4-week time frame (shown via the green dotted
line in Figure 10a) highlighting the change in temperature due to
the point and collective anomalies. Similarly, Figure 10b (right) high-
lights the change in temperature due to injected point and periodic
anomalies.
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Figure 11: Drift generation reflecting seasonal weather tran-
sitions.

In this example, we use point anomalies with a = 0.01, r = 100,
Uniform distribution. For the collective anomalies, we use two
intervals, g = 2000, r = 50, Gaussian distribution with (z = 0,0 =
0.2), A = 6, a = 0.01. For periodic anomalies, we used similar
settings except with a Gaussian distribution (z = 0, 0 = 0.5),
and a = 0.05. Users will interactively adjust parameter values to
visualize changes in the data due to varying anomaly types, anomaly
percentage, distribution, and their co-occurrence frequency.

Case 2: Seasonal transitions. In the second case study, we demon-
strate CanGene’s drift generation features. We will guide a user
through the drift generation process of selecting streams to use
as concepts, and evaluate varying parameter values for the num-
ber of drifts, the percentage of data to use to simulate short vs.
long duration weather events (heavy rain lasting a few hours vs.
weeks-long heat waves), and the occurrence of these events in con-
junction with extreme weather events. We will show how the above
anomaly-injected streams are used as inputs to generate recurring
and abrupt concept drifts due to seasonal weather events and heat
waves, respectively.

Figure 11 shows five injected drifts (in yellow) where the blue,
green and red background indicate temperature data streams from
Greece, Norway, and Germany, respectively. Recurring drifts can be
generated in CanGene by injecting a larger number of drifts than the
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Figure 12: Comparative performance of anomaly detection baselines for varying nc and C.

available number of input data streams, e.g., transition from Norway
(green) to Germany (red) and back to Norway. Figure 11 (bottom-
left) show zoomed-in details of the drift reflecting how temperatures
from Norway (cool weather) transition to moderate temperatures in
Germany, depicting the transition to the Autumn season. Similarly,
Figure 11 (bottom-right) shows a drift from temperatures in Norway
to warm temperatures in Greece, reflecting the transition to the
sudden, increased temperatures of a heat wave.

Table 3: ECG dataset characteristics.

| ECG803

230,400
11,025 (4.8%)

| ECG805

230,400
20200 (8.8%)

| ECG806

230,400
5,214 (2.3%)

data size
# anomalies

Case 3: Impact of concept drift on anomaly detection. We
demonstrate the utility of our generated drift(s) dataset by evaluat-
ing a set of baseline anomaly detection algorithms. We implement
the following algorithms using the TSB-UAD benchmark contain-
ing univariate time-series anomaly detection methods [23]. We use
three ECG datasets with anomaly labels, with data characteristics
shown in Table 3 [22].

NormA [6]: NormA derives to keep multiple normal patterns to
identify anomalies, based on their frequency of appearance and
similarity. It computes the anomaly score as the weighted sum of
differences from all normal patterns.

SAND [7]: SAND extends NormA online by updating normal pat-
terns in real-time batches, helping to understand changes in these
patterns. Due to the batch processing, it takes time to adapt to
changes, as it needs to re-balance the weight of each normal pat-
terns based on its frequency.

DAMP [21]: DAMP compares an incoming subsequence with the
previously seen time series data in the backward direction, to find
the similar subsequences. It computes the anomaly score based on
the distance of the most similar subsequence within a certain time
range.

For each ECG dataset, we vary two drift parameters: (1) nc: the
number of drifts from [2, 11] in increments of two; and (2) C: the
percentage of drift from [0.05, 0.4] in 0.05 increments. We computed

the Area Under the Curve (AUC) to eliminate the impact of the de-
tection threshold. Figure 12a and Figure 12b show the comparative
AUC comparison for varying nc and C, respectively. To establish a
starting point (with no generated concept drift), we run the three
anomaly detection algorithms on the original datasets (without con-
cept drift), and report the averaged AUC over 5-runs as nc = C = 0.
We observe that for NormA and SAND, the AUC decreases as n¢
and C increase. SAND shows higher AUC than NormA due to its
ability to differentiate between recent vs. historical normal patterns
in online settings. However, SAND incurs a significantly higher
computational overhead than NormA (greater than 20x in our eval-
uation). DAMP, demonstrated more stable overall performance in
the presence of increasing concept drift. However, DAMP showed
high sensitivity to small data fluctuations that were not anomalies
(noise) leading to more false positives.

4 CONCLUSION

Although anomalies and concept drifts commonly occur in real
time series data, there are few datasets that include labels for both
types of events. In this work, we present CanGene, a data generation
tool that addresses the lack of tools for both anomaly injection and
concept drift generation. By leveraging existing real data, CanGene
supports injecting point, collective, and periodic anomalies accord-
ing to uniform, Gaussian, or skew-normal random distributions. In
addition, using these anomaly-labeled time series data, CanGene
supports generation of abrupt, gradual and recurring drifts relative
to these anomalies. We demonstrate three case studies showing the
data utility of the generated data, and the comparative performance
of three time series, anomaly detection baseline methods in the
presence of concept drift.
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