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ABSTRACT
Graph algorithms are at the center of database optimization and
data management, and countless optimization algorithms can be
expressed as graph algorithms. Additionally, graph algorithms form
the foundational mechanism to query graph databases. In this work,
we demonstrate how three central graph problems, all-pairs short-
est path, graph isomorphism, and community detection, can be
solved using quantum annealers. The problem formulation for the
all-pairs shortest path problem is new. The work is implemented
in a demonstration system, which shows that the selected graph
algorithms have natural quantum computational formulations and
that running small but realistic workloads on quantum annealers
is feasible.
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1 INTRODUCTION
Quantum computing for databases and data management is an
emerging research field that has seen substantial growth in recent
years [35, 46]. The field aims to address the need for more sophisti-
cated optimization methods, which are crucial as the volume and
complexity of data continue to grow at an increasing rate. The key
vision in the field is that the optimization of databases could happen
partly on quantum computers in the future.

Most of the previous research has focused on the optimization
of relational databases utilizing various quadratic unconstrained
binary optimization formulations [4, 11, 15, 17, 25, 33, 34, 36, 37,
44, 45, 49, 53]. The second most common quantum computational
approach is to tackle database problems with quantum machine
learning [18, 19, 47, 51, 52]. Although many optimization problems
in relational databases are fundamentally graph problems (e.g., join
order selection), the full power of graph algorithms in the field is
not yet well-studied. To start a more systematic study and bench-
marking of the existing graph algorithms in quantum computing,
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we have developed a demonstration system that allows users to
study three central graph algorithms: all-pairs shortest path, graph
isomorphism, and community detection.

The primary motivation behind this demonstration system is the
necessity of understanding fundamental graph algorithms, which
have a crucial role in many real-life applications. We also likely
need to develop specific quantum algorithms instead of rewriting
classical algorithms in the quantum equivalent format. For example,
this type of algorithm development was demonstrated in [48]. It is
also important to identify which types of graph algorithms have
characteristics that would benefit from quantum computing. For
example, a clear example is the shortest path finding algorithms,
which have polynomial-time classical solutions but relatively ex-
pensive quadratic unconstrained binary optimization formulations
[21]. On the other hand, quantum walks on graphs have proved
to show speedups [24, 41]. This work demonstrates these types of
differences between the studied algorithms.

First, we present a brief background to quadratic binary opti-
mization on quantum computers. Then, we define the three graph
algorithms, all-pairs shortest path, graph isomorphism, and com-
munity detection, as binary optimization problems. Finally, we will
present the demonstration system and show how it can be utilized
to obtain results. This work was initially developed for the master’s
thesis [50].

1.1 Binary optimization on quantum computers
For a comprehensive introduction to quantum computing, we guide
the reader to [29]. Quantum machine learning for database opti-
mization was covered in [51]. Ising problems, equivalent to un-
constrained binary optimization problems, and a large number of
NP-hard problems using binary models are introduced in [23]. Also,
[34] contains a good introduction to Quadratic Unconstrained Bi-
nary Optimization (QUBO) formalism and discusses the capabilities
of the current quantum annealers.

Next, we describe the key, high-level idea behind the optimiza-
tion processes on quantum hardware. The optimization problems
can be represented as Hamiltonians, which are essentially matri-
ces that describe the so-called energy levels of the corresponding
quantum system. Our focus is on computing the smallest eigen-
states and eigenvectors of these matrices as they correspond to the
ground energy states for Hamiltonians. If the optimization problem
is encoded correctly, the low-energy states also represent solutions
to the original real-life optimization problem.

Quantum computing can be divided into at least two paradigms:
circuit-based quantum computing and adiabatic quantum comput-
ing. Quantum annealers, to which this paper is focused, are based
on adiabatic quantum computing. The high-level idea of adiabatic
quantum computing is that the computation starts from an initial
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Hamiltonian with a simple and known ground state and proceeds to
a final Hamiltonian whose ground state encodes the solution to the
computational problem [3]. If the transformation from the simple
Hamiltonian to the problem Hamiltonian is sufficiently slow, the
adiabatic theorem ensures that the system remains in the lowest-
energy state throughout the entire process.

D-Wave is the leading developer of quantum annealers. The first
D-Wave quantum computer was built in 2011 [31]. In 2024, there are
three versions of the D-Wave annealers in open use [1]: Advantage
system 4.1 (5627 qubits and 40279 couplers), Advantage system
5.4 (5614 qubits and 40050 couplers), and Advantage system 6.3
(5614 qubits and 40105 couplers). D-Wave provides both quantum
solvers and hybrid solvers. Quantum solvers use quantum annealers
directly, whereas hybrid solvers use both classical and quantum
resources to solve optimization problems. On the software level,
D-Wave provides Ocean, which is a Python framework through
which quantum annealers can be accessed.

Next, we describe our theoretical formalism, which enables
us to express a wide variety of optimization problems. Let 𝑥 =

(𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 a binary vector. A Quadratic Unconstrained
Binary Optimisation (QUBO) problem is a combinatorial optimiza-
tion problem where the goal is to minimize the objective function
𝑓 : {0, 1}𝑛 → R defined by

𝑓 (𝑥) =
𝑛∑︁
𝑖=1

𝑄𝑖,𝑖𝑥𝑖 +
∑︁
𝑖< 𝑗

𝑄𝑖, 𝑗𝑥𝑖𝑥 𝑗 .

The diagonal terms 𝑄𝑖,𝑖 are the linear coefficients, and the off-
diagonal terms 𝑄𝑖, 𝑗 are the quadratic coefficients. Solving QUBO is
an NP-hard problem [23] that has a wide variety of applications in
different fields. There are many classical algorithms to solve QUBO
problems [20], and they are the standard formalism to express
problems for quantum annealers.

Quantum annealers are restricted by topologies, which define the
qubit connections in the device. While mapping QUBO problems to
annealing topologies is an important problem, our demonstration
will rely on the standard ”minor miner” algorithm defined in the
Ocean software. Since the mapping is an NP-hard problem [22]
itself, in some cases, it is useful to identify faster heuristics to
perform the mapping [44, 45].

2 ALGORITHMS
We have selected three distinct types of graph problems:

(1) All pairs shortest path [39]
(2) Graph isomorphism [16]
(3) Community detection [10]
These problems have been chosen to represent different compu-

tational complexity classes, which are visualized in Figure 1. While
intuitively solving 𝑃-hard problems should be the easiest, the prob-
lem encoding on quantum hardware creates a certain overhead that
seems problem-dependent. Interestingly, the NP-hard community
detection problem seemed to have the best scalability on quantum
computers among the three selected graph algorithms.

2.1 All-pairs shortest path
The shortest path-finding problem is one of the most well-known
computer science problems. Since the Dijkstra algorithm solves it

Figure 1: Relation of the complexity classes and selected
algorithms.

in polynomial time, the quantum computational formulation for the
path-finding algorithm works as an example of quantum algorithm
design rather than an attempt to find a formulation that would beat
the classical algorithms.

There exist three varying QUBO formulations and an adiabatic
algorithm for the single-pair shortest path algorithm [21, 30]. In this
subsection, we are developing a new type of quantum annealing
algorithm where we are not only interested in finding the single
shortest path but the shortest paths between multiple pairs, likely
all of them. Each minimal solution corresponds to the shortest path
between certain vertices in a graph. Assuming that we will obtain a
sufficient number of samples from the quantum annealer, we would
solve the all-pairs shortest path algorithm with a single QUBO.
This problem is still not hard since the Floyd-Warshall algorithm
[8] solves the problem in polynomial time. However, the Floyd-
Warshall algorithm produces only the sum of the path weights
when our algorithm also produces the path.

Binary variables. Let 𝐺 = (𝑉 , 𝐸) be a weighted and directed
graph with weights𝑤𝑖, 𝑗 > 0 for each 𝑒𝑖, 𝑗 ∈ 𝐸. We define 2|𝑉 | + |𝐸 |
binary variables representing start node, target node, and edges.
The first |𝑉 | binary variables, corresponding to the starting vertices
of shortest paths, are 𝑥𝑠

𝑖
for 𝑖 ∈ 𝑉 where the superscript 𝑠 refers to

”start”. These variables are one-hot encoding of the starting vertex
𝑠 for each path. If 𝑥𝑠

𝑖
= 1, then the vertex 𝑖 is the starting vertex of

the corresponding shortest path. Next, variables 𝑥𝑡
𝑖
for 𝑖 ∈ 𝑉 are

similarly one-hot encoding of the target vertices. Last, we define
variables 𝑥𝑒

𝑖 𝑗
which are one-hot encodings of edges 𝑒𝑖 𝑗 ∈ 𝐸. The

superscript clarifies that the variable refers to edges. If 𝑥𝑒
𝑖 𝑗

= 1, then
𝑒𝑖 𝑗 is part of the shortest path.

Next, we encode multiple constraints. It is important to remem-
ber that we are not encoding a problem where we want to find a
single minimal solution but a problem where the first low-energy
solutions represent certain shortest paths in a graph. In the follow-
ing constraints, we encode the validity of a solution and choose the
coefficient of 𝑝 =

∑
(𝑖, 𝑗 ) ∈𝐸 𝑤𝑖, 𝑗 +1. The coefficient is adjusted so that

all solutions with energy levels below zero are correct paths, but
not necessarily shortest paths. The minimum value of the cost con-
straint is the sum of weights. Even a small error in path formation
should counterbalance this.

Uniqueness of starting vertices. Every pathmust have a single
starting vertex 𝑠 . To encode the constraint, we use the standard



”select one variable to be true” constraint

𝐻1 = 𝑝

(
1 −

∑︁
𝑖∈𝑉

𝑥𝑠𝑖

)2
.

Next, we encode that there must be an edge starting from the
starting vertex 𝑠 and no edge terminating to 𝑠 . This constraint re-
turns −𝑝 if the starting vertex and edge from the vertex match. The
constraint penalizes cases if the starting vertex and edge terminat-
ing in that vertex match. Thus, the next constraint becomes

𝐻2 = −𝑝
∑︁
𝑒𝑖 𝑗 ∈𝐸

𝑥𝑠𝑖 𝑥
𝑒
𝑖 𝑗 + 𝑝

∑︁
𝑒𝑖 𝑗 ∈𝐸

𝑥𝑠𝑗𝑥
𝑒
𝑖 𝑗 .

Uniqueness of target vertices. Similarly to the previous unique-
ness constraint, there has to be a unique target vertex 𝑡 for every
path. The constraint penalizes every such pair if more than one
target vertex is selected. Hence, the full constraint is

𝐻3 = 𝑝

(
1 −

∑︁
𝑖∈𝑉

𝑥𝑡𝑖

)2
.

The next constraint ensures that there must be an edge termi-
nating to 𝑡 and no edge starting from 𝑡 . The constraint returns −𝑝
if the target vertex and edge terminating to that vertex match. The
constraint returns 𝑝 if the target vertex and edge starting from that
vertex match:

𝐻4 = −𝑝
∑︁
𝑒𝑖 𝑗 ∈𝐸

𝑥𝑡𝑖 𝑥
𝑒
𝑖 𝑗 + 𝑝

∑︁
𝑒𝑖 𝑗 ∈𝐸

𝑥𝑡𝑗𝑥
𝑒
𝑖 𝑗 .

Finally, the starting vertex 𝑠 and the target vertex 𝑡 must differ.
In this case, the constraint penalizes with 𝑝 if both 𝑥𝑠

𝑖
and 𝑥𝑡

𝑖
are

selected.

𝐻5 = 𝑝
∑︁
𝑣𝑖 ∈𝑉

𝑥𝑠𝑖 𝑥
𝑡
𝑖

Constraints on edges. The next constraint encodes that two
edges should not start or terminate at the same vertex. Forcing this
constraint ensures that the path does not contain cycles:

𝐻6 = 𝑝
∑︁
𝑒𝑖 𝑗 ∈𝐸

©«
∑︁
𝑒𝑖𝑙 ∈𝐸

𝑥𝑒𝑖 𝑗𝑥
𝑒
𝑖𝑙
+

∑︁
𝑒𝑘 𝑗 ∈𝐸

𝑥𝑒𝑖 𝑗𝑥
𝑒
𝑘 𝑗

ª®¬ .
The next constraint encodes the property that every path has to

be connected:

𝐻7 = 𝑝
∑︁
𝑒𝑖 𝑗 ∈𝐸

©«𝑥𝑒𝑖 𝑗 −
∑︁
𝑒 𝑗𝑙 ∈𝐸

𝑥𝑒𝑖 𝑗𝑥
𝑒
𝑗𝑙

ª®¬ .
In other words, if we include edge (𝑖, 𝑗), thenwe should have exactly
one edge ( 𝑗, 𝑙) which is connected to edge (𝑖, 𝑗).

Cost constraint. Paths having lower weights should be priori-
tized. This final constraint returns𝑤𝑖 𝑗 for each edge selected to the
path:

𝐻8 =
∑︁
𝑒𝑖 𝑗 ∈𝐸

𝑤𝑖 𝑗𝑥
𝑒
𝑖 𝑗 .

2.2 Graph isomorphism
The problem of determining if two graphs are isomorphic is not
known to be NP-complete, although it is a hard problem in practice
[16]. Graph isomorphism is particularly interesting because, similar
to the integer factoring problem solved by Shor’s algorithm in
polynomial time [40], it is not known to be NP-complete.

Formally, a graph isomorphism problem is to find a bijective
mapping 𝜋 : 𝑉1 → 𝑉2 for 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) so that
whenever (𝑣1,𝑤1) ∈ 𝐸1 is an edge in 𝐺1, then (𝜋 (𝑣1), 𝜋 (𝑤1)) ∈ 𝐸2
is an edge in𝐺2. The QUBO formulation for the graph isomorphism
problem was presented in [7, 23]. The other quantum computing
formulations are the quantum walk-based algorithm [42], and the
adiabatic algorithm [12]. The comparison of quantum algorithms
for graph isomorphism problems is [9]. In this formulation, we use
a coefficient 𝑝 = |𝑉 | in the bijectivity constraint. The bijectivity
constraint will not be violated with this approach.

Binary variables. The binary variables are 𝑥𝑣1,𝑣2 for each 𝑣1 ∈
𝑉1 and 𝑣2 ∈ 𝑉2. If 𝑥𝑣1,𝑣2 = 1, we set 𝜋 (𝑣1) = 𝑣2.

Bijectivity. First, we construct a constraint for bijectivity:

𝐻1 = 𝑝
∑︁
𝑣1∈𝑉1

©«1 −
∑︁
𝑣2∈𝑉2

𝑥𝑣1,𝑣2
ª®¬
2

+ 𝑝
∑︁
𝑣2∈𝑉2

©«1 −
∑︁
𝑣1∈𝑉1

𝑥𝑣1,𝑣2
ª®¬
2

.

The first term forces the constraint that for every vertex 𝑣1 ∈ 𝑉1
in the domain graph, we choose exactly one vertex 𝑣2 ∈ 𝑉2 in the
target graph. Since we want to construct a bijection, the second
term encodes the same mapping in the other direction.

Mapping respects edges. The second constraint encodes the
property that the graph isomorphism must respect the edges:

𝐻2 = −
∑︁

(𝑣1,𝑣2 ) ∈𝐸1

∑︁
(𝑤1,𝑤2 ) ∈𝐸2

𝑥𝑣1,𝑤1𝑥𝑣2,𝑤2

−
∑︁

(𝑣1,𝑣2 ) ∈𝐸1

∑︁
(𝑤1,𝑤2 ) ∈𝐸2

𝑥𝑣1,𝑤2𝑥𝑣2,𝑤1

Considering the first term, if there is an edge (𝑣1, 𝑣2) ∈ 𝐸1 on the
domain side, then we should have an edge (𝑤1,𝑤2) ∈ 𝐸2 on the
target side so that 𝜋 (𝑣1) = 𝑤1 and 𝜋 (𝑣2) = 𝑤2. If we do, the energy
level is lowered by−1. The second term encodes the same constraint
in the other direction. This is needed as the graphs are undirected.

The final QUBO is the sum of the previous objectives. In this
case, the QUBO has a minimum of −|𝐸 | if and only if the graphs
are isomorphic [23].

2.3 Community detection
The community detection algorithm partitions an undirected graph
into communities so that the number of edges in the same com-
munity is maximized and the number of edges between the com-
munities is minimized [10, 43]. The algorithm is NP-complete [5].
Community detection has many applications, for example, in com-
puter science, social sciences, and biology [10, 14]. Unlike graph
isomorphism or shortest paths problems, the community detection
problem does not have an exact solution for partitioning a graph
into communities, as there is no precise definition of a community.
Community detection has been relatively widely studied from a
quantum computing perspective [2, 6, 13, 26, 32, 38].



Several algorithms are proposed to solve community detection
problem [10, 28]. One approach is constructing a function that
describes the quality of the chosen partitioning. Then, the goal is
to express this quality function as a QUBO problem and maximize
its value. The QUBO formulation used in this work is based on
[26]. It relies on the modularity approach [27], where the task is to
maximize the function

𝑄 =
1
2𝑚

∑︁
𝑖 𝑗

(
𝑤𝑖 𝑗 −

𝑘𝑖𝑘 𝑗

2𝑚

)
𝛿 (𝑐𝑖 , 𝑐 𝑗 ),

where 𝑘𝑖 is the sum of weights of edges that connect to vertex 𝑖 , 𝑐𝑖
is the community of vertex 𝑖 , 𝑤𝑖 𝑗 is the weight between vertices
𝑖 and 𝑗 , 𝑚 =

∑
𝑤 is the total sum of weights in the graph and

characteristic function 𝛿 (𝑖, 𝑗) is 1 if 𝑖 = 𝑗 and 0 otherwise. The
function describes the modularity of a partition of a graph. A value
of 0 means that the partition is random. The higher the value, the
better the modularity is. Maximum value is 1. Values around 0.3 or
more usually indicate good partitioning [27].

In this formulation, we use a coefficient 𝑝 = 0.1 in the first
constraint. The algorithm’s performance would be much poorer
without this, probably due to the significant difference in magnitude
between the values in the first and second constraints.

Binary variables. For the QUBO encoding, we define |𝑉 | |𝐶 |
many binary variables as 𝑥𝑣𝑐 ∈ {0, 1}, where 𝑣 ∈ 𝑉 and 𝑐 ∈ 𝐶

indicating if vertex 𝑣 belongs to the community 𝑐 . We construct the
objective function from the following constraints.

Vertex must belong to exactly one community. This con-
straint is the standard ”select one variable from a set of variables”.
The objective function reaches its minimum when we have selected
exactly one community for each vertex:

𝐻1 = 𝑝
∑︁
𝑐∈𝐶

(
1 −

∑︁
𝑣∈𝑉

𝑥𝑣𝑐

)2
.

Minimise modularity. The function returns modularity value
𝑘𝑖𝑘 𝑗/2𝑚 −𝑤𝑖 𝑗 for each pair of vertices 𝑖 and 𝑗 if they belong to the
same community. Since we want to maximize the modularity and
deal with minimization problems, the modularity for each pair is
multiplied by −1. Thus, this constraint becomes:

𝐻2 =
1
2𝑚

∑︁
𝑐∈𝐶

∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉

(
𝑘𝑖𝑘 𝑗

2𝑚
−𝑤𝑖 𝑗

)
𝑥𝑖𝑐𝑥 𝑗𝑐 .

3 DEMONSTRATION SYSTEM AND RESULTS
We have implemented the previous three graph algorithms in a
demonstration system. The system has a user-friendly front end,
which allows users to explore the three graph problems with many
different types of preloaded graphs. User can also upload their own
graphs. The problems can be solved with various D-Wave quantum
computers and simulators.

The outputs are visualized in multiple ways, which are shown in
Figure 2. The demo system visualizes the underlying graph, provides
an overview of the QUBO weights with an illustrative heatmap,
prints out energy levels and their occurrences, and represents other
relevant information about the measurements from the quantum
annealer.

Our goal was not to develop a scientifically rigorous benchmark
system but to demonstrate how the selected graph algorithms can

Figure 2: Screenshot of the demo system after executing com-
munity detection algorithm

be designed using QUBO formulation, implemented with D-Wave
Ocean software, and integrated with the demo system so that their
execution would be easy for non-specialists. We plan to extend this
demo into a realistic benchmark in future work. Using the demo
system, we can obtain some results, which we will present and
discuss in this section. More detailed results can be found in [50].
We want to emphasize that it is often a complex task to find correct
weights between QUBO constraints, which affects the quality of
the results. Thus, there might be room for further improvement
regarding these results.

The results presented here include only a few of the graph types
available in the demonstration system. A random graph is con-
structed by NetworkX gnp_random_graph function with probabil-
ity for edge creation 0.3 and seed 42. The all-pairs shortest path and
the community detection algorithms use graphs having weights. In
these cases, randomweight 1 . . . 10 is placed on all edges (except the
community graph). In the community graph, vertices are divided
into three approximately equal-sized groups. Every group is itself
a complete subgraph in which each edge has a weight of 5. Two



vertices from each group are connected to two vertices in all other
groups with edges having weights 1.

In practice, algorithms are executed on a quantum annealer
several times to achieve the correct lowest energy level. In the
demonstration system, this parameter can be set in the ”number
of reads” parameter. This defines how many samples an annealer
produces as output. By default, we set it to 2000. Increasing this
parameter would increase the running time but would give better
accuracy.

3.1 All-pairs shortest path algorithm
Considering the all-pairs shortest path algorithm, we demonstrate
the algorithm with the graph in Figure 3. After constructing the
QUBO problem for this graph and executing it on a quantum an-
nealer, the service returns a summary of samples from the annealer.
Some of the samples are shown in Figure 4.

Figure 3: Graph example used in all pairs shortest path prob-
lem

0-1 0-2 1-3 2-1 2-4 3-2 3-4 s0 s1 s2 s3 s4 t0 t1 t2 t3 t4 energy num_oc.
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 -26.0 61
1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 -25.0 279
2 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 -24.0 139
...
8 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 -21.0 82
...
['BINARY', 27 rows, 1890 samples, 17 variables]

Figure 4: Example of results from quantum solver in all pairs
shortest path.

The idea of how to interpret these samples is as follows: If we
choose to interpret the sample on row number 2, we see that the
variables 0 − 2, 2 − 1, 𝑠0, and 𝑡1 are set to 1. This result means that
we have found the shortest path from starting vertex 0 (𝑠0) to target
vertex 1 (𝑡1), which consists of edges (0, 2) and (2, 1). This is the
correct solution since this path has weight 3 in Figure 3, while any
other path is more expensive. Similarly, every row in the solution
having a negative energy level describes one of the correct paths
in the graph. The shortest paths have the smallest energy level.

Now, the same algorithm has been benchmarked with various
other tree, wheel and random graphs. The results are in Figure 5.
The results are obtained from a simulator and D-Wave’s quantum
annealer without using D-Wave’s hybrid features. The accuracy is
compared to the classical all-pairs shortest path algorithm.

Both the local simulator and the quantum solver produced the
correct output for graphs with 5 vertices. The results were similar
for graphs with 6 vertices, except that the quantum solver reached
only an accuracy of 93 % with the random graph.

Figure 5: Results from all-pairs shortest path algorithm

Performance was significantly dropped when the algorithm was
applied to graphs with more vertices. The algorithm performed
well on the local simulator but struggled on the quantum solver. Re-
sults were significantly better on the tree graphs than on the wheel
graphs and especially on the random graphs. The tree graphs are
more sparse than wheel graphs, and wheel graphs are more sparse
than random graphs. When applying this algorithm, more dense
graphs mean that more couplers (quadratic coefficients) are needed,
which mainly explains the differences. Current quantum annealers
are constructed so that there is a limited amount of physical cou-
plers. If there is a need for more couplers, one logical qubit must be
represented by two physical qubits that are coupled together. This
makes the actual qubit-coupler construction more complex, which
then brings more noise to the algorithm.

In general, accuracy drops rather steeply when the number of
vertices is increased. This is partly explained by the limitations of a
real quantum computer but partly due to the nature of the algorithm.
To identify all possible correct paths, we need polynomially more
correct samples. The more vertices and edges a graph has, the more
probable it is that all of these paths do not fit in the sample set
(which in these benchmarks was set to 2000).

3.2 Graph isomorphism
The results of the graph isomorphism algorithm are presented in
Figure 6. Performance was measured using pairs of isomorphic
graphs. The second graph was created from the first graph by ran-
domly permuting the vertices. Only isomorphic graphs were used
because, in practice, failure of the algorithm can only be observed
with isomorphic graphs, as non-isomorphic graphs always produce
energy levels greater than −|𝐸 | (which is the correct energy level
of isomorphism). The performance was measured by the difference
between the energy level of the outcome and the correct energy
level.

Figure 6: Results from graph isomorphism algorithm

The local simulated annealing solver, the hybrid solver, and the
quantum solver performed very well, with the small-sized graphs



having less than 8 vertices. When the number of vertices was in-
creased from that level, all three solvers started to struggle. Solvers
found a rather low energy level, but not the lowest one, which
would indicate correct output. This gap grew larger when more
vertices were added to the graphs.

The hybrid solver and local solver performed similarly, but there
was a significant difference in running time. The hybrid solver took
a rather constant 3 seconds to run when the local simulator could
take more than 30 seconds in the largest graphs.

Again, random graphs were the hardest problem for the algo-
rithm. The same rule applies to this algorithm as to the all-pairs
shortest path algorithm: the more edges the graphs have, the more
couplers (quadratic coefficients) are needed.

3.3 Community detection
The results of the community detection algorithm are presented in
Figure 7. Although community detection is an NP-complete prob-
lem, the results are one of themost promising for this algorithm. The
main indicator for performance was the accuracy measured by the
difference of modularity value of the outcome (lowest energy level
found) and the modularity value calculated from the outcome of
classical NetworkX function greedy_modularity_communities.

Figure 7: Results from community detection algorithm

The most important graph type for benchmarking this algorithm
was the community graph, which has three clear communities, as
described earlier. The algorithm was also benchmarked with tree
graphs and random graphs. The tree graphs can have rather clear
communities depending on random weights, while the random
graphs we used here do not have any clear communities.

The performance started to drop much slower with this algo-
rithm than with two other algorithms when the number of vertices
was increased. When using community and tree graphs, the algo-
rithm produced correct results in graphs having 20 vertices. When
the number of vertices increased from that, the hybrid solver had
the best performance, even better than the local simulator. The
quantum solver had again the most difficulties in reaching the
correct energy level.

One explanation for better performance in this algorithm could
be that, for example, the tree graph having 20 vertices needs 400
qubits and 8322 couplers in the graph isomorphism problem but
only 60 qubits and 630 couplers when solving the community de-
tection problem. However, the need for qubits and couplers in this
algorithm is quite the same as when solving the all-pairs shortest
path problem (the tree graph having 20 vertices needs 59 qubits and
502 couplers). This is explained by the fact that the all-pairs shortest

path algorithm has other performance constraints explained ear-
lier, mainly the need for many samples of varying negative energy
levels.

4 CONCLUSION AND FUTUREWORK
In this paper, we have developed a demonstration system that im-
plements three central graph algorithms: all-pairs shortest path,
graph isomorphism, and community detection. We invite users to
download the demo on GitHub and test it. Using the system, we
obtained initial results that describe the scalability of the quan-
tum algorithms and systems compared to the classical solvers. The
system and the results also demonstrate differences between the
algorithms at a very concrete level.

When constructing and testing algorithms, we found that fine-
tuning the coefficients for the individual constraints is important.
Firstly, it is important that the coefficients are such that the algo-
rithmworksmathematically correctly (all-pairs shortest path, graph
isomorphism). However, it can also be important in improving the
performance of algorithms in current noisy quantum computers
(community detection).

We plan to collect a more systematic literature survey and a
comprehensive implementation of graph algorithms on quantum
computers in the future. As we argued in the beginning, the im-
portance of graph algorithms is evident. Often, real-life solutions
require small modifications or additional constraints that might be
difficult to encode using the original formulations but these modifi-
cations might be natural to include using QUBOs. The flexibility and
expressiveness of the QUBO formalism have been demonstrated in
many applications, and we are planning to improve these formula-
tions further in database research.
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