13. PKDD / 20. ECML 2009:
Bled,
Slovenia
Wray L. Buntine, Marko Grobelnik, Dunja Mladenic, John Shawe-Taylor (Eds.):
Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2009, Bled, Slovenia, September 7-11, 2009, Proceedings, Part I.
Lecture Notes in Computer Science 5781 Springer 2009, ISBN 978-3-642-04179-2
Invited Talks (Abstracts)
Machine Learning Journal Abstracts
- Weiwei Cheng, Eyke Hüllermeier:
Combining Instance-Based Learning and Logistic Regression for Multilabel Classification.
6
- Thomas Gärtner, Shankar Vembu:
On Structured Output Training: Hard Cases and an Efficient Alternative.
7
- Thorsten Joachims, Chun-Nam John Yu:
Sparse Kernel SVMs via Cutting-Plane Training.
8
- Jeffrey Johns, Marek Petrik, Sridhar Mahadevan:
Hybrid Least-Squares Algorithms for Approximate Policy Evaluation.
9
- Alexander Liu, Goo Jun, Joydeep Ghosh:
A Self-training Approach to Cost Sensitive Uncertainty Sampling.
10
- Dan Roth, Rajhans Samdani:
Learning Multi-linear Representations of Distributions for Efficient Inference.
11
- Raúl Santos-Rodríguez, Alicia Guerrero-Curieses, Rocío Alaíz-Rodríguez, Jesús Cid-Sueiro:
Cost-Sensitive Learning Based on Bregman Divergences.
12
Data Mining and Knowledge Discovery Journal Abstracts
- Leman Akoglu, Christos Faloutsos:
RTG: A Recursive Realistic Graph Generator Using Random Typing.
13-28
- Francesco Bonchi, Carlos Castillo, Debora Donato, Aristides Gionis:
Taxonomy-Driven Lumping for Sequence Mining.
29
- Henrik Grosskreutz, Stefan Rüping:
On Subgroup Discovery in Numerical Domains.
30
- Philipp Kranen, Thomas Seidl:
Harnessing the Strengths of Anytime Algorithms for Constant Data Streams.
31
- Matthijs van Leeuwen, Jilles Vreeken, Arno Siebes:
Identifying the Components.
32
- Ilkka Huopaniemi, Tommi Suvitaival, Janne Nikkilä, Matej Oresic, Samuel Kaski:
Two-Way Analysis of High-Dimensional Collinear Data.
33
- Qiang-Li Zhao, Yan-Huang Jiang, Ming Xu:
A Fast Ensemble Pruning Algorithm Based on Pattern Mining Process.
34
Regular Papers
- Tarek Abudawood, Peter Flach:
Evaluation Measures for Multi-class Subgroup Discovery.
35-50
- Érick Alphonse, Aomar Osmani:
Empirical Study of Relational Learning Algorithms in the Phase Transition Framework.
51-66
- Loulwah AlSumait, Daniel Barbará, James Gentle, Carlotta Domeniconi:
Topic Significance Ranking of LDA Generative Models.
67-82
- Hock Hee Ang, Vivekanand Gopalkrishnan, Wee Keong Ng, Steven C. H. Hoi:
Communication-Efficient Classification in P2P Networks.
83-98
- Ai Azuma, Yuji Matsumoto:
A Generalization of Forward-Backward Algorithm.
99-114
- Michele Berlingerio, Francesco Bonchi, Björn Bringmann, Aristides Gionis:
Mining Graph Evolution Rules.
115-130
- Eva Besada-Portas, Sergey M. Plis, Jesús Manuel de la Cruz, Terran Lane:
Parallel Subspace Sampling for Particle Filtering in Dynamic Bayesian Networks.
131-146
- Albert Bifet, Ricard Gavaldà:
Adaptive XML Tree Classification on Evolving Data Streams.
147-162
- Mirko Böttcher, Martin Spott, Rudolf Kruse:
A Condensed Representation of Itemsets for Analyzing Their Evolution over Time.
163-178
- Mario Boley, Henrik Grosskreutz:
Non-redundant Subgroup Discovery Using a Closure System.
179-194
- Jean-Cédric Chappelier, Emmanuel Eckard:
PLSI: The True Fisher Kernel and beyond.
195-210
- Yanhua Chen, Lijun Wang, Ming Dong:
Semi-supervised Document Clustering with Simultaneous Text Representation and Categorization.
211-226
- Michal Aharon, Gilad Barash, Ira Cohen, Eli Mordechai:
One Graph Is Worth a Thousand Logs: Uncovering Hidden Structures in Massive System Event Logs.
227-243
- Ali Daud, Juanzi Li, Lizhu Zhou, Faqir Muhammad:
Conference Mining via Generalized Topic Modeling.
244-259
- Christian Desrosiers, George Karypis:
Within-Network Classification Using Local Structure Similarity.
260-275
- Paramveer S. Dhillon, Brian Tomasik, Dean P. Foster, Lyle H. Ungar:
Multi-task Feature Selection Using the Multiple Inclusion Criterion (MIC).
276-289
- Tom Diethe, Zakria Hussain:
Kernel Polytope Faces Pursuit.
290-301
- Jorge Díez, Juan José del Coz, Antonio Bahamonde, Oscar Luaces:
Soft Margin Trees.
302-314
- Huyen Do, Alexandros Kalousis, Melanie Hilario:
Feature Weighting Using Margin and Radius Based Error Bound Optimization in SVMs.
315-329
- Huyen Do, Alexandros Kalousis, Adam Woznica, Melanie Hilario:
Margin and Radius Based Multiple Kernel Learning.
330-343
- Ilias N. Flaounas, Marco Turchi, Tijl De Bie, Nello Cristianini:
Inference and Validation of Networks.
344-358
- Johannes Fürnkranz, Eyke Hüllermeier, Stijn Vanderlooy:
Binary Decomposition Methods for Multipartite Ranking.
359-374
- Murat Can Ganiz, Nikita I. Lytkin, William M. Pottenger:
Leveraging Higher Order Dependencies between Features for Text Classification.
375-390
- Alessandra Giordani, Alessandro Moschitti:
Syntactic Structural Kernels for Natural Language Interfaces to Databases.
391-406
- Nico Görnitz, Marius Kloft, Ulf Brefeld:
Active and Semi-supervised Data Domain Description.
407-422
- Derek Greene, Padraig Cunningham:
A Matrix Factorization Approach for Integrating Multiple Data Views.
423-438
- Quanquan Gu, Jie Zhou:
Transductive Classification via Dual Regularization.
439-454
- Gokhan Gulgezen, Zehra Cataltepe, Lei Yu:
Stable and Accurate Feature Selection.
455-468
- Hirotaka Hachiya, Jan Peters, Masashi Sugiyama:
Efficient Sample Reuse in EM-Based Policy Search.
469-484
- Huseyin Hakkoymaz, Georgios Chatzimilioudis, Dimitrios Gunopulos, Heikki Mannila:
Applying Electromagnetic Field Theory Concepts to Clustering with Constraints.
485-500
- Yanjun Han, Jue Wang:
An l1 Regularization Framework for Optimal Rule Combination.
501-516
- Gregor Heinrich:
A Generic Approach to Topic Models.
517-532
- Thibault Helleputte, Pierre Dupont:
Feature Selection by Transfer Learning with Linear Regularized Models.
533-547
- Arjen Hommersom, Nivea de Carvalho Ferreira, Peter J. F. Lucas:
Integrating Logical Reasoning and Probabilistic Chain Graphs.
548-563
- Tuyen N. Huynh, Raymond J. Mooney:
Max-Margin Weight Learning for Markov Logic Networks.
564-579
- Dino Ienco, Ruggero G. Pensa, Rosa Meo:
Parameter-Free Hierarchical Co-clustering by n-Ary Splits.
580-595
- Daisuke Ikeda, Einoshin Suzuki:
Mining Peculiar Compositions of Frequent Substrings from Sparse Text Data Using Background Texts.
596-611
- Takashi Isozaki, Maomi Ueno:
Minimum Free Energy Principle for Constraint-Based Learning Bayesian Networks.
612-627
- Sebastian Jaimungal, Eddie K. H. Ng:
Kernel-Based Copula Processes.
628-643
- Nicholas K. Jong, Peter Stone:
Compositional Models for Reinforcement Learning.
644-659
- Tobias Jung, Peter Stone:
Feature Selection for Value Function Approximation Using Bayesian Model Selection.
660-675
- Kristian Kersting, Zhao Xu:
Learning Preferences with Hidden Common Cause Relations.
676-691
- Marius Kloft, Shinichi Nakajima, Ulf Brefeld:
Feature Selection for Density Level-Sets.
692-704
- Levente Kocsis, András György:
Efficient Multi-start Strategies for Local Search Algorithms.
705-720
- Olga Kozlova, Olivier Sigaud, Pierre-Henri Wuillemin, Christophe Meyer:
Considering Unseen States as Impossible in Factored Reinforcement Learning.
721-735
- Tobias Lang, Marc Toussaint:
Relevance Grounding for Planning in Relational Domains.
736-751
Copyright © Fri Mar 12 17:19:49 2010
by Michael Ley (ley@uni-trier.de)