16. UAI 2000:
Stanford,
California,
USA
Craig Boutilier, Moisés Goldszmidt (Eds.):
UAI '00: Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence, Stanford University, Stanford, California, USA, June 30 - July 3, 2000.
Morgan Kaufmann 2000, ISBN 1-55860-709-9 @proceedings{DBLP:conf/uai/2000,
editor = {Craig Boutilier and
Mois{\'e}s Goldszmidt},
title = {UAI '00: Proceedings of the 16th Conference in Uncertainty in
Artificial Intelligence, Stanford University, Stanford, California,
USA, June 30 - July 3, 2000},
booktitle = {UAI},
publisher = {Morgan Kaufmann},
year = {2000},
isbn = {1-55860-709-9},
bibsource = {DBLP, http://dblp.uni-trier.de}
}
- Teresa Alsinet, Lluis Godo:
A Complete Calcultis for Possibilistic Logic Programming with Fuzzy Propositional Variables.
1-10
- Christophe Andrieu, Nando de Freitas, Arnaud Doucet:
Reversible Jump MCMC Simulated Annealing for Neural Networks.
11-18
- Ann Becker, Dan Geiger, Christopher Meek:
Perfect Tree-like Markovian Distributions.
19-23
- Daniel S. Bernstein, Shlomo Zilberstein, Neil Immerman:
The Complexity of Decentralized Control of Markov Decision Processes.
32-37
- Jeff Bilmes:
Dynamic Bayesian Multinets.
38-45
- Christopher M. Bishop, Michael E. Tipping:
Variational Relevance Vector Machines.
46-53
- Craig Boutilier:
Approximately Optimal Monitoring of Plan Preconditions.
54-62
- Urszula Chajewska, Daphne Koller:
Utilities as Random Variables: Density Estimation and Structure Discovery.
63-71
- Jian Cheng, Marek J. Druzdzel:
Computational Investigation of Low-Discrepancy Sequences in Simulation Algorithms for Bayesian Networks.
72-81
- David Maxwell Chickering, David Heckerman:
A Decision Theoretic Approach to Targeted Advertising.
82-88
- Frans Coetzee, Steve Lawrence, C. Lee Giles:
Bayesian Classification and Feature Selection from Finite Data Sets.
89-97
- Gregory F. Cooper:
A Bayesian Method for Causal Modeling and Discovery Under Selection.
98-106
- Fabio Gagliardi Cozman:
Separation Properties of Sets of Probability Measures.
107-114
- James Cussens:
Stochastic Logic Programs: Sampling, Inference and Applications.
115-122
- Adnan Darwiche:
A Differential Approach to Inference in Bayesian Networks.
123-132
- Adnan Darwiche:
Any-Space Probabilistic Inference.
133-142
- Sanjoy Dasgupta:
Experiments with Random Projection.
143-151
- Sanjoy Dasgupta, Leonard J. Schulman:
A Two-Round Variant of EM for Gaussian Mixtures.
152-159
- Ian Davidson:
Minimum Message Length Clustering Using Gibbs Sampling.
160-167
- Scott Davies, Andrew W. Moore:
Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks with Mixed Continuous And Discrete Variables.
168-175
- Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, Stuart J. Russell:
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks.
176-183
- Brendan J. Frey, Nebojsa Jojic:
Learning Graphical Models of Images, Videos and Their Spatial Transformations.
184-191
- Nir Friedman, Dan Geiger, Noam Lotner:
Likelihood Computations Using Value Abstraction.
192-200
- Nir Friedman, Daphne Koller:
Being Bayesian about Network Structure.
201-210
- Nir Friedman, Iftach Nachman:
Gaussian Process Networks.
211-219
- Phan Hong Giang, Prakash P. Shenoy:
A Qualitative Linear Utility Theory for Spohn's Theory of Epistemic Beliefs.
220-229
- Peter Gorniak, David Poole:
Building a Stochastic Dynamic Model of Application Use.
230-237
- Peter Grünwald:
Maximum Entropy and the Glasses You are Looking Through.
238-246
- Joseph Y. Halpern:
Conditional Plausibility Measures and Bayesian Networks.
247-255
- Michael Harvey, Radford M. Neal:
Inference for Belief Networks Using Coupling From the Past.
256-263
- David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite, Carl Myers Kadie:
Dependency Networks for Collaborative Filtering and Data Visualization.
264-273
- Søren Højsgaard:
YGGDRASIL-A statistical package for learning Split Models.
274-281
- Michael C. Horsch, William S. Havens:
Probabilistic Arc Consistency: A Connection between Constraint Reasoning and Probabilistic Reasoning.
282-290
- Tony Jebara, Tommi Jaakkola:
Feature Selection and Dualities in Maximum Entropy Discrimination.
291-300
- Radim Jirousek:
Marginalization in Composed Probabilistic Models.
301-308
- Souhila Kaci, Salem Benferhat, Didier Dubois, Henri Prade:
A principled analysis of merging operations in possibilistic logic.
24-31
- Michael J. Kearns, Yishay Mansour, Satinder P. Singh:
Fast Planning in Stochastic Games.
309-316
- Uffe Kjærulff, Linda C. van der Gaag:
Making Sensitivity Analysis Computationally Efficient.
317-325
- Daphne Koller, Ronald Parr:
Policy Iteration for Factored MDPs.
326-334
- Pierfrancesco La Mura:
Game Networks.
335-342
- Pedro Larrañaga, Ramon Etxeberria, José Antonio Lozano, José Manuel Peña:
Combinatonal Optimization by Learning and Simulation of Bayesian Networks.
343-352
- Tsai-Ching Lu, Marek J. Druzdzel, Tze-Yun Leong:
Causal Mechanism-based Model Constructions.
353-362
- Thomas Lukasiewicz:
Credal Networks under Maximum Entropy.
363-370
- Peter McBurney, Simon Parsons:
Risk Agoras: Dialectical Argumentation for Scientific Reasoning.
371-379
- Marina Meila, Tommi Jaakkola:
Tractable Bayesian Learning of Tree Belief Networks.
380-388
- Brian Milch, Daphne Koller:
Probabilistic Models for Agent's Beliefs and Decisions.
389-396
- Andrew W. Moore:
The Anchors Hierarchy: Using the Triangle Inequality to Survive High Dimensional Data.
397-405
- Andrew Y. Ng, Michael I. Jordan:
PEGASUS: A policy search method for large MDPs and POMDPs.
406-415
- Thomas D. Nielsen, Finn Verner Jensen:
Representing and Solving Asymmetric Bayesian Decision Problems.
416-425
- Thomas D. Nielsen, Pierre-Henri Wuillemin, Finn Verner Jensen, Uffe Kjærulff:
Using ROBDDs for Inference in Bayesian Networks with Troubleshooting as an Example.
426-435
- Dennis Nilsson, Steffen L. Lauritzen:
Evaluating Influence Diagrams using LIMIDs.
436-445
- Luis E. Ortiz, Leslie Pack Kaelbling:
Adaptive Importance Sampling for Estimation in Structured Domains.
446-454
- Tim Paek, Eric Horvitz:
Conversation as Action Under Uncertainty.
455-464
- Dmitry Pavlov, Heikki Mannila, Padhraic Smyth:
Probabilistic Models for Query Approximation with Large Sparse Binary Data Sets.
465-472
- David M. Pennock, Eric Horvitz, Steve Lawrence, C. Lee Giles:
Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach.
473-480
- David M. Pennock, Michael P. Wellman:
Compact Securities Markets for Pareto Optimal Reallocation of Risk.
481-488
- Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, Leslie Pack Kaelbling:
Learning to Cooperate via Policy Search.
489-496
- Pascal Poupart, Craig Boutilier:
Value-Directed Belief State Approximation for POMDPs.
497-506
- David V. Pynadath, Michael P. Wellman:
Probabilistic State-Dependent Grammars for Plan Recognition.
507-514
- Silja Renooij, Linda C. van der Gaag, Simon Parsons, Shaw Green:
Pivotal Pruning of Trade-offs in QPNs.
515-522
- Dale Schuurmans, Finnegan Southey:
Monte Carlo inference via greedy importance sampling.
523-532
- Marc Sebban, Richard Nock:
Combining Feature and Example Pruning by Uncertainty Minimization.
533-540
- Satinder P. Singh, Michael J. Kearns, Yishay Mansour:
Nash Convergence of Gradient Dynamics in General-Sum Games.
541-548
- Claus Skaanning:
A Knowledge Acquisition Tool for Bayesian-Network Troubleshooters.
549-557
- Harald Steck:
On the Use of Skeletons when Learning in Bayesian Networks.
558-565
- Amos J. Storkey:
Dynamic Trees: A Structured Variational Method Giving Efficient Propagation Rules.
566-573
- Loo-Nin Teow, Kia-Fock Loe:
An Uncertainty Framework for Classification.
574-579
- Jin Tian:
A Branch-and-Bound Algorithm for MDL Learning Bayesian Networks.
580-588
- Jin Tian, Judea Pearl:
Probabilities of Causation: Bounds and Identification.
589-598
- Shivakumar Vaithyanathan, Byron Dom:
Model-Based Hierarchical Clustering.
599-608
- Jirina Vejnarová:
Conditional Independence and Markov Properties in Possibility Theory.
609-616
- Haiqin Wang, Marek J. Druzdzel:
User Interface Tools for Navigation in Conditional Probability Tables and Elicitation of Probabilities in Bayesian Networks.
617-625
- Wim Wiegerinck:
Variational Approximations between Mean Field Theory and the Junction Tree Algorithm.
626-633
- David M. Williamson, Russell Almond, Robert Mislevy:
Model Criticism of Bayesian Networks with Latent Variables.
634-643
- Frank Wittig, Anthony Jameson:
Exploiting Qualitative Knowledge in the Learning of Conditional Probabilities of Bayesian Networks.
644-652
Copyright © Fri Mar 12 17:22:30 2010
by Michael Ley (ley@uni-trier.de)