| 2009 |
35 | | Gavin Taylor,
Ronald Parr:
Kernelized value function approximation for reinforcement learning.
ICML 2009: 128 |
34 | | Erik Halvorson,
Vincent Conitzer,
Ronald Parr:
Multi-Step Multi-Sensor Hider-Seeker Games.
IJCAI 2009: 159-166 |
| 2008 |
33 | | Ronald Parr,
Lihong Li,
Gavin Taylor,
Christopher Painter-Wakefield,
Michael L. Littman:
An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning.
ICML 2008: 752-759 |
| 2007 |
32 | | Shihao Ji,
Ronald Parr,
Hui Li,
Xuejun Liao,
Lawrence Carin:
Point-Based Policy Iteration.
AAAI 2007: 1243-1249 |
31 | | Ronald Parr,
Christopher Painter-Wakefield,
Lihong Li,
Michael L. Littman:
Analyzing feature generation for value-function approximation.
ICML 2007: 737-744 |
30 | | Shihao Ji,
Ronald Parr,
Lawrence Carin:
Nonmyopic Multiaspect Sensing With Partially Observable Markov Decision Processes.
IEEE Transactions on Signal Processing 55(6-1): 2720-2730 (2007) |
| 2006 |
29 | | Monika Schaeffer,
Ronald Parr:
Efficient Selection of Disambiguating Actions for Stereo Vision.
UAI 2006 |
| 2005 |
28 | | Austin I. Eliazar,
Ronald Parr:
Hierarchical Linear/Constant Time SLAM Using Particle Filters for Dense Maps.
NIPS 2005 |
| 2004 |
27 | | Austin I. Eliazar,
Ronald Parr:
Learning probabilistic motion models for mobile robots.
ICML 2004 |
26 | | Austin I. Eliazar,
Ronald Parr:
DP-SLAM 2.0.
ICRA 2004: 1314-1320 |
| 2003 |
25 | | Michail G. Lagoudakis,
Ronald Parr:
Reinforcement Learning as Classification: Leveraging Modern Classifiers.
ICML 2003: 424-431 |
24 | | Austin I. Eliazar,
Ronald Parr:
DP-SLAM: Fast, Robust Simultaneous Localization and Mapping Without Predetermined Landmarks.
IJCAI 2003: 1135-1142 |
23 | | Michail G. Lagoudakis,
Ronald Parr:
Approximate Policy Iteration using Large-Margin Classifiers.
IJCAI 2003: 1432-1434 |
22 | | Carlos Guestrin,
Daphne Koller,
Ronald Parr,
Shobha Venkataraman:
Efficient Solution Algorithms for Factored MDPs.
J. Artif. Intell. Res. (JAIR) 19: 399-468 (2003) |
21 | | Michail G. Lagoudakis,
Ronald Parr:
Least-Squares Policy Iteration.
Journal of Machine Learning Research 4: 1107-1149 (2003) |
| 2002 |
20 | | Carlos Guestrin,
Michail G. Lagoudakis,
Ronald Parr:
Coordinated Reinforcement Learning.
ICML 2002: 227-234 |
19 | | Michail G. Lagoudakis,
Ronald Parr:
Learning in Zero-Sum Team Markov Games Using Factored Value Functions.
NIPS 2002: 1627-1634 |
18 | | Michail G. Lagoudakis,
Ronald Parr,
Michael L. Littman:
Least-Squares Methods in Reinforcement Learning for Control.
SETN 2002: 249-260 |
17 | | Michail G. Lagoudakis,
Ronald Parr:
Value Function Approximation in Zero-Sum Markov Games.
UAI 2002: 283-292 |
16 | | Lipyeow Lim,
Min Wang,
Sriram Padmanabhan,
Jeffrey Scott Vitter,
Ronald Parr:
XPathLearner: An On-line Self-Tuning Markov Histogram for XML Path Selectivity Estimation.
VLDB 2002: 442-453 |
| 2001 |
15 | | Carlos Guestrin,
Daphne Koller,
Ronald Parr:
Max-norm Projections for Factored MDPs.
IJCAI 2001: 673-682 |
14 | | Carlos Guestrin,
Daphne Koller,
Ronald Parr:
Multiagent Planning with Factored MDPs.
NIPS 2001: 1523-1530 |
13 | | Michail G. Lagoudakis,
Ronald Parr:
Model-Free Least-Squares Policy Iteration.
NIPS 2001: 1547-1554 |
12 | | Uri Lerner,
Ronald Parr:
Inference in Hybrid Networks: Theoretical Limits and Practical Algorithms.
UAI 2001: 310-318 |
| 2000 |
11 | | Urszula Chajewska,
Daphne Koller,
Ronald Parr:
Making Rational Decisions Using Adaptive Utility Elicitation.
AAAI/IAAI 2000: 363-369 |
10 | | Uri Lerner,
Ronald Parr,
Daphne Koller,
Gautam Biswas:
Bayesian Fault Detection and Diagnosis in Dynamic Systems.
AAAI/IAAI 2000: 531-537 |
9 | | Daphne Koller,
Ronald Parr:
Policy Iteration for Factored MDPs.
UAI 2000: 326-334 |
| 1999 |
8 | | Daphne Koller,
Ronald Parr:
Computing Factored Value Functions for Policies in Structured MDPs.
IJCAI 1999: 1332-1339 |
7 | | Andrew Y. Ng,
Ronald Parr,
Daphne Koller:
Policy Search via Density Estimation.
NIPS 1999: 1022-1028 |
6 | | Andrés Rodríguez,
Ronald Parr,
Daphne Koller:
Reinforcement Learning Using Approximate Belief States.
NIPS 1999: 1036-1042 |
| 1998 |
5 | | Ronald Parr:
Flexible Decomposition Algorithms for Weakly Coupled Markov Decision Problems.
UAI 1998: 422-430 |
| 1997 |
4 | | David Andre,
Nir Friedman,
Ronald Parr:
Generalized Prioritized Sweeping.
NIPS 1997 |
3 | | Ronald Parr,
Stuart J. Russell:
Reinforcement Learning with Hierarchies of Machines.
NIPS 1997 |
| 1995 |
2 | | Ronald Parr,
Stuart J. Russell:
Approximating Optimal Policies for Partially Observable Stochastic Domains.
IJCAI 1995: 1088-1095 |
| 1993 |
1 | | Stuart J. Russell,
Devika Subramanian,
Ronald Parr:
Provably Bounded Optimal Agents.
IJCAI 1993: 338-345 |