go back

Volume 16, No. 2

HMAB: Self-Driving Hierarchy of Bandits for Integrated Physical Database Design Tuning

R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, Renata Borovica-Gajic


Effective physical database design tuning requires selection of several physical design structures (PDS), such as indices and materialised views, whose combination influences overall system performance in a non-linear manner. While the simplicity of combining the results of iterative searches for individual PDSs may be appealing, such a greedy approach may yield vastly suboptimal results compared to an integrated search. We propose a new self-driving approach (HMAB) based on hierarchical multi-armed bandit learners, which can work in an integrated space of multiple PDS while avoiding the full cost of combinatorial search. HMAB eschews the optimiser cost misestimates by direct performance observations through a strategic exploration, while carefully leveraging its knowledge to prune the less useful exploration paths. As an added advantage, HMAB comes with a provable guarantee on its expected performance. To the best of our knowledge, this is the first learned system to tune both indices and materialised views in an integrated manner. We find that our solution enjoys superior empirical performance relative to state-of-the-art commercial physical database design tools that search over the integrated space of materialised views and indices. Specifically, HMAB achieves up to 96% performance gain over a state-of-the-art commercial physical database design tool when running industrial benchmarks.

PVLDB is part of the VLDB Endowment Inc.

Privacy Policy